IRREGULARITIES OF SPECIAL C-PAIRS

STEFAN KEBEKUS, ERWAN ROUSSEAU, AND FREDERIC TOUZET

ABSTRACT. This paper studies irregularity-type invariants of special C-pairs, or “geo-
metric orbifolds” in the sense of Campana. Under mild assumptions on the singularities,
we show that the augmented irregularity of a C-pair (X, D) is bounded by its dimen-
sion. This generalizes earlier results of Campana, and strengthens known results even
in the classic case where X is a projective manifold and D = 0. The proof builds on
new extension results for adapted forms, analysis of foliations on Albanese varieties, and
constructions of Bogomolov sheaves using strict wedge subspaces of adapted forms.
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1. INTRODUCTION

Special varieties were introduced in a series of influential papers by Campana, [Cam04,
Caml1], as complex-projective manifolds where the classic Bogomolov-Sommese in-
equality is strict, or equivalently, as complex-projective manifolds that do not dominate a
“geometric orbifold” or “C-pair” of general type. It is conjectured that the notion of “spe-
cialness” characterizes “potential density”, both in the arithmetic setting (where “density”
refers to sets of rational points) and in the analytic setting (where “density” refers to entire
curves).

This article studies irregularities of special manifolds and of mildly singular C-pairs
that appear in the minimal model program.

Invariants of special manifolds. The starting point is a fundamental observation of Cam-
pana: If X is a complex-projective manifold that is special, then the irregularity ¢(X) :=
h°(X, Q;() is always bounded by the dimension of X, [Cam04, Sect. 5.2]. Using his results
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on the invariance of specialness under étale coverings, he concludes that the augmented
irregularity,

q(X) == sup {q()?) : X — X a finite étale cover} ,

is likewise bounded by dim X.

Invariants of special pairs. Given that the natural objects of Campana’s theory are “geo-
metric orbifolds” or “C-pairs”, where adapted differentials take the role that ordinary
differentials play for ordinary spaces, it is natural to ask for generalizations.

Conjecture 1.1 (Irregularities of special C-pairs, [KR24a, Conjecture 6.17]). Let (X, D) be
a C-pair where the analytic variety X is compact and Kahler. If (X, D) is special, then its
augmented irregularity is bounded by the dimension, ¢*(X, D) < dim X.

For the convenience of the reader not familiar with the theory, we recall the defin-
ition of “augmented irregularity” in brief. The reference paper [KR24a] introduces and
discusses all relevant notions in great detail.

Definition 1.2 (Irregularity, augmented irregularity, [KR24a]). Let (X, D) be a compact
C-pair. If y : X — X is any cover, we refer to the number

—_ 10 (37 ~l1]
¢(X,D,y) = h (X, Q(X’D,Y))

as the irregularity of (X, D, y). The number
q (X,D) = sup{q(X, D,y) : ya cover} € NU {0}
is the augmented irregularity of the C-pair (X, D).

1.1. Main result. The main result of this paper answers Conjecture 1.1 in the positive,
for all pairs that will typically appear in minimal model theory. We refer the reader to
[KM98] for the definition of “divisorially log terminal” pairs.

Theorem 1.3 (Boundedness of augmented irregularity). Let (X, D) be a C-pair that sat-
isfies one of the following conditions.

(1.3.1) The analytic variety X is compact Kihler and (X, D) is locally uniformizable.
(1.3.2) The analytic variety X is projective and (X, D) is divisorially log terminal (=dlt).

If (X, D) is special, then q*(X, D) < dim X.

Remark 1.4 (Novelty of the result). Even in cases where X is a complex-projective mani-
fold and D = 0, Theorem 1.3 is new and stronger than Campana’s classic result, which
considers étale coverings only.

Remark 1.5 (Earlier results on Albanese irregularities). Theorem 1.3 generalizes and
strengthens earlier results, including [KR24b, Theorem 8.1], on the “augmented Albanese
irregularity” g, (X, D). The augmented Albanese irregularity is a variant of the augmen-
ted irregularity. It is geometrically meaningful, always bounded by ¢* (X, D), but hard to
control and compute in practise.

The proof of Theorem 1.3 relies in part on the following extension theorem for adapted
reflexive differentials, which might be of independent interest.

Theorem 1.6 (Extension of adapted forms on dlt pairs). Let (X, D) be an algebraic, quasi-
projective C-pair that is dlt. Then, adapted reflexive 1-forms on (X, D) extend to log resolu-
tions of singularities.
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1.2. Outline of the proof. For the proof of the classic result on irregularities of special
complex-projective manifolds, it suffices to show that the Albanese map of a special mani-
fold is necessarily surjective. Aiming for the contrapositive, Campana studies manifolds
whose Albanese is not surjective. Building on earlier of work of Kawamata, Kobayashi,
and Ueno on positivity in sheaves of differentials on varieties of maximal Albanese di-
mension, he constructs a sheaf of differentials where equality in the Bogomolov-Sommese
inequality is attained, showing that the underlying space cannot be special.

In our setting, where adapted differentials take the role that ordinary differentials
play for ordinary spaces, there is in general no “adapted Albanese map”. Even in special
cases where a suitably-defined Albanese does exist, it is known that the classical equality
between the irregularity and the dimension of the Albanese variety is not true in general
[KR24b, Sect. 7.1].

We overcome this problem by considering the classic Albanese of suitable covers,
where adapted differentials define a foliation. Though these will typically have Zariski
dense leaves, we can leverage ideas from Catanese’s work on generalized Castelnuovo-
De Franchis theorems and “strict wedge subspaces of differentials”, in order to obtain
positivity results for the foliated variety that can be used in lieu of the classic arguments.

For sheaves of one-forms, these arguments work particularly well, and provide the
following partial generalization of Campana’s statement on the invariance of specialness
under étale cover, [Cam04, Sect. 5.2] and [Cam11, Prop. 10.11].

Corollary 1.7 (Adapted one-forms on covers of spacial pairs). Let (X, D) be a projective
C-pair that is dlt, let y : X - X be any cover and let £ C QE;(]Dy) be coherent of rank
one. If (X,D) is special, then the C-Kodaira-litaka dimension of .Z is bounded by one:

xko(Z) < 1.

1.3. Acknowledgements. The authors would like to thank Finn Bartsch, Frédéric Cam-
pana and Ariyan Javanpeykar for long and fruitful discussions.

The work on this paper was carried out in part while Stefan Kebekus visited the Uni-
versité de Bretagne Occidentale at Brest. He would like to thank the department for its
hospitality and the pleasant working atmosphere.

2. NOTATION AND KNOWN RESULTS

This paper works with complex spaces. With very few exceptions, we follow the nota-
tion of the standard reference texts [GR84, Dem12]. This section clarifies less commonly-
used notation and recalls a few well-known results for later reference. A full introduction
to the theory of C-pairs is, however, out of scope. We refer the reader to the reference
[KR24a] for definitions and a very detailed introduction to all the material used here. For
the reader’s convenience, we include precise references to [KR24a] throughout the text,
whenever a term of C-pair theory appears for the first time.

2.1. Global assumptions and standard notation. An analytic variety is a reduced,
irreducible complex space. For clarity, we refer to holomorphic maps between analytic
varieties as morphisms and reserve the word map for meromorphic mappings.

Definition 2.1 (Big and small sets). Let X be an analytic variety. An analytic subset A € X
is called small if it has codimension two or more. An open set U C X is called big if X \ U
is analytic and small.

Definition 2.2 (g-morphisms). Quasi-finite morphisms between normal analytic varieties
of equal dimension are called q-morphisms.

Following the literature, we use square brackets to denote reflexive tensor operations.
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Notation 2.3 (Reflexive tensor operations). Let X be a normal analytic variety and let £
be a torsion free coherent sheaf of &'x-modules. Write

glenl = (gomy=, ALz = (An2)™,
Sym!" . .= (Sym" £)**, det & = (AKZ @),
If ¢ : X — Y is a morphism and .% a coherent sheaf on Y, write ¢[*1.7 := (p*.7)**.

If X is any analytic variety, we denote the sheaf of Kéhler differentials by Q3. We
recall the notation for reflexive logarithmic differentials.

Notation 2.4 (NC locus). Let X be a normal analytic variety and let D be a Weil Q-divisor
on X. Write (X, D)eg € X for the maximal open set where X is smooth and D has normal
crossing support.

Notation 2.5 (Differentials with logarithmic poles). Let X be a normal analytic variety and
let D be a Weil Q-divisor on X.

(2.5.1) If X is smooth and D has nc support, we will often write Qi(log D) to denote
the sheaves of Kihler differentials with logarithmic poles along supp D.
(2.5.2) Denote the inclusion of the nc locus by ¢ : (X, D)reg < X and write

[p] -, 0of
QX (log D) = I*Q(X,D)reg (logD|(X,D)reg)'

(2.53) If 7 : Y — X is any morphism from a smooth variety Y where 7! supp D
is of pure codimension one and has normal crossings, write Q‘f,(log *D) to
denote the sheaves of Kihler differentials with logarithmic poles along the set
7~ supp D.

Remark 2.6. The sheaf Q}[f I (log D) in (2.5.2) is reflexive, in particular coherent.

For later reference, we note the following lemma on the behaviour of pull-back for
differentials under product maps. The proof is elementary and left to the reader.

Lemma 2.7 (Pull-back of differentials under product maps). Let (¢; : X --> Y;)i=1,. 4 bea

finite number of rational maps between complex manifolds and let
Q=P X X@g: X >V X XY,

be the associated product map. Then, there exists a dense open subset X° C X where all maps

are well-defined and where the following subsheaves of QL. agree,

a

imgd(plx-) = ) imgd(pilx-) € Q.. O

i=1
2.2. C-pairs and adapted morphisms. The key notion of the present paper is the C-
pair. We recall the definition in brief and refer to the reference paper [KR24a] for details.

Definition 2.8 (C-pairs, [KR24a, Sect. 2.5]). A C-pair is a pair (X, D) where X is a normal
analytic variety and D a Weil Q-divisor D is of the form

_ m,~—1
D_Z m; .Di,
i

withm; € N2 U {oo} and ==1 = 1. If (X, D) is a C-pair, it will sometimes be convenient to
consider the following Weil Q-divisor

1 .
Dogy = Z — - D; € QDiv(X).

1

i| mj<oco

Definition 2.9 (Adapted morphism, [KR24a, Sect. 2.5]). Given a C-pair (X,D), a g-

morphism y : X — X is called adapted for (X, D) if y*Doyyp is integral. It is called strongly
adapted for (X, D) if y*Doyp is reduced.
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2.3. Linear systems in reflexive sheaves. If X is a compact manifold, .Z € Pic(X) a
line bundle and L € H°(X, .£) a non-trivial space of sections, complex geometry fre-
quently considers the meromorphic map ¢p ¢ : X --> P(L), given at general points by
x > ker(o — o(x)). Parts of this paper discuss analogous constructions in cases where
X is potentially singular and .Z is reflexive of rank one. To avoid any confusion, we
clarify the setup in detail.

Notation 2.10 (Projectivized linear spaces). If L is a linear space, write P(L) for the space
of hyperplanes in L, or equivalently, for the space of one-dimensional subspaces in L*.

Remark 2.11 (Subspaces and projections). With Notation 2.10, an inclusion L; < L, of
linear spaces therefore corresponds a linear projection P(L,) --> P(L;), given at general
points by H — H N Ly.

Lemma 2.12 (Spaces of sections in torsion free sheaves). If X is a compact, normal ana-
lytic variety, £ a torsion free, rank-one sheaf of O'x-modules and L € H°(X, £) a non-
trivial space of sections, there exists a meromorphic map ¢y ¢ : X --> P(L), given at general
points by x - ker(o - o(x)).

Proof. Recall from [Ros68, Thm. 3.5] that there exists a bimeromorphic modification, say
n: X — X, where Z = (n*.£)/tor is invertible. Let F C H°(X, .#) be the image of L
under the natural inclusion

7t ftor : H*(X, .£) — H°(X, Z),

set 1. = @r.7 o 7~ ! and observe that the map does not depend on the choice of the
modification. O

Remark 2.13. The reader coming from algebraic geometry might wonder why Lemma 2.12
requires any proof at all: in contrast to the algebraic setting, holomorphic morphisms
defined on a Zariski dense open do not in general extend to meromorphic mapping on
the full space.

Notation 2.14 (Meromorphic maps induced by linear systems in torsion free sheaves).
Throughout the present paper, we use the notation ¢, _¢ to denote the meromorphic map
_ 0 . .

of Lemma 2.12. In cases where L = H (X, .,2”), we write ¢ ¢ instead of Pro (Xz)g
2.4. SNC morphisms. While snc pairs are the logarithmic analogues of smooth spaces,
snc morphisms are the analogues of smooth maps. We recall the main properties for
the reader’s convenience and refer to [GKKP11, Sect. 2.B] for a full discussion and for
references to the literature. While [GKKP11] works with algebraic varieties, the results
mentioned here carry over to the analytic setting without change.

Notation 2.15 (Intersection of boundary components). Let (X, D) be a pair,
D=o;-Di+...+a,-Dy.

IfI € {1,...,n} is not empty, write Dj := N;¢;D; for the (potentially non-reduced) inter-

section of complex spaces. If I is empty, set Dy := X.

Reminder 2.16 (Description of snc pairs, [GKKP11, Rem. 2.8]). In the setup of Nota-

tion 2.15, the pair (X, D) is snc if and only if the following holds for every index set

Ic{1,...,n} withD; # 0.

(2.16.1) The intersection Dy is smooth.

(2.16.2) The codimension equals codimy Dy = |I|.

Definition 2.17 (Snc morphism, [GKKP11, Def. 2.9]). Let (X, D) be an snc pair and let
¢ : X > T be a surjective morphism to a complex manifold. Call ¢ an snc morphism of
(X, D) if the following holds for every index set1 C {1,...,n} with Dy # 0.

(2.17.1) The restricted morphism ¢|p, : Dr — T is smooth.
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(2.17.2) The restricted morphism ¢|p, has relative dimension dimX — dim T — |I|.

Reminder 2.18 (All morphisms are generically snc). If (X, D) isan sncpairand ¢ : X — T
is a surjective morphism to a complex manifold, then there exists a dense, Zariski open
subset of T over which ¢ is an snc morphism.

Reminder 2.19 (Fibre bundle structure of proper morphisms). Let (X, D) be a logarithmic
snc pair and let ¢ : X - T be a proper snc morphism of (X, D). Then, ¢ : X\ D » T isa
differentiable fibre bundle.

Reminder 2.20 (Fibers and relative differentials of snc morphisms). Let (X, D) be a log-
arithmic snc pair and let ¢ : X - T be an snc morphism of (X, D). Then, there exists a
natural exact sequence of locally free sheaves,

0 — ¢*QL <25 Ol (logD) — L3 Qk(logD)/q,*Q; —0.
—————

=:Q;(/T (log D)

If t € T is any point with fibre X; := ¢~!(t) and inclusion 1; : X; — X, then X; is
smooth and D, := ;D is logarithmic and snc. There exists a natural identification between
restrictions rendering the following diagram commutative,

. LN
1*Q3 (log D) ———» t,Q)l(/T(logD)

‘ lident.

[*Q;((log D) T? Qi([ (log Dt)

2.5. Forms on fibre spaces. We recall (and slightly generalize) a fundamental fact of
Kahler geometry: If ¢ : X — T is a fibration and ¢ a closed 1-form on X that vanishes on
one fibre, then o comes from T.

Proposition 2.21. Let (X, D) be a logarithmic snc pair and let ¢ : X - T be an snc
morphism of (X, D). Assume that X is Kéhler and that ¢ is proper. Ifc € H*(X, Q} (log D))
is closed, then the following statements are equivalent.

(2.21.1) There exists one pointt € T with fibre X, := ¢~1(t) and inclusion 1, : X; — X such
that the restriction of o to X; vanishes,
dyo =0 € H(X;, Qy (logDy)).
(2.21.2) Locally on X, the form o comes from downstairs: o € H°(X, q)*Q;).

Proof. The direction (2.21.2) = (2.21.1) is trivial. To prove the converse, assume that a
closed form o and a point t € T with the properties of (2.21.1) are given. We need to show
that

Reminder 2.
o€ H(X, (P*QlT) emmcgrzzo diso=0¢eH° (Xs, Q;s(logDs)), for everys e T.

Assume that a point s € T is given. Since (X, D;s) is snc and X is compact and Kéhler,
recall that the image of the natural integration map,

11 (Xs \ Dg) — HO(XS, Q;(s(logDs))*, Yy (r — fyr)

spans the vector space H’(X;, Q) (log Dy))", see [NW14, Thm. 4.5.4]. To prove that di;o
vanishes, it will therefore suffice to prove that

diso =0, for every loop ys in X; \ Ds.
¥s
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Assume that a loop y; in X; \ Dy is given and recall from Reminder 2.19 that ¢ : X\D -» T
is a differentiable fibre bundle over a path connected base. The homotopy exact sequence
therefore implies that the loop ys is homotopy equivalent within X \ D to a loop y; in
X; \ D;. We have

/d150=/ 0'(;)/ J:/dlto(z'z——m)/0=0
Ys LsOYs Loyt Yt Yt

where (*) follows from homotopy equivalence of y; and y;, and closedness of the holo-
morphic form o. O

2.6. Foliations defined by meromorphic maps. The conclusion of Proposition 2.21 is
frequently summarized by saying that “the logarithmic form ¢ annihilates the foliation
defined by ¢”. To avoid confusion, we define this terminology explicitly.

Definition 2.22 (Foliation defined by meromorphic maps). Ifp : X --> Y is a meromorphic
map between complex manifolds, let 1 : X° < X be the inclusion of the maximal open set
where ¢ is well-defined. We refer to

(2.22.1) L ker(T((p|xo) L Txo — ((P|X°)*<7y) C 1 Txo = Fx

as the foliation defined by ¢. Observe that this sheaf is coherent, saturated as a subsheaf of
Ix and hence reflexive. It is closed under the Lie bracket.

Notation 2.23 (Foliation defined by meromorphic maps). Assume the setting of Defini-
tion 2.22. If no confusion is likely to arise, we write ker(Tg) C Jx for the foliation
defined by ¢, as a shorthand for the more cumbersome expression (2.22.1).

Definition 2.24 (Logarithmic forms annihilating foliations). If (X, D) is an snc pair, if
F C Ix is a foliation and o € H(X, Q} (log D)) a logarithmic form, we say that ‘o
annihilates .7 ” if the natural sheaf morphism

o:F — ﬂX(Dred)

is constantly zero.

3. RATIONAL MAPS INDUCED BY GENERICALLY GENERATED SHEAVES

To prepare for the discussion of “Bogomolov sheaves” defined by strict wedge sub-
spaces in Section 6, this section considers sheaves &, subspaces E C H°(X, &) and ra-
tional maps coming from the induced linear systems A™*¢E — HO(X, det &).

Definition 3.1 (Sheaves generically generated by spaces of sections). Let X be a compact
and normal analytic variety, and let & be a coherent sheaf of Ox-modules. Assume that
& is not a torsion sheaf, and let E C H°(X, &) be a linear subspace. Call & generically
generated by sections in E if the following two equivalent conditions hold.

(3.1.1) The natural map E ® Ox — & is generically surjective.
(3.1.2) The natural map Ag, : Arank& gy po (X, det &) is non-trivial.

The following construction is the basis for all that follows in this section.

Construction 3.2 (Projection to linear systems induced by spaces of sections). In the setup
of Definition 3.1, assume that & is generically generated by sections in E. Observe that
det & is reflexive with a non-trivial space of sections. Following the notation of Sec-
tion 2.3, denote the associated rational map by

Pdet s+ X - P(HO(X, detéa)).
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As remarked in 2.11, the inclusion img Ay C H°(X, det&) of linear spaces induces a
rational projection map between the projectivizations,

P(HO(X, det 5)) > P(img)LE).

Given that elements of img Ag do not vanish at general points of X, the image of @get ¢ is
not contained in the indeterminacy of the projection, and we obtain a composed rational
map 1g = Pimg Ap.det & as follows,

=l ____ 0(x det&)) ——=—————=— 5 i

X > ]P’(H (X, det éa)) Sraiection » P(lmgAE).

Notation 3.3 (Projection to linear systems induced by spaces of sections). We will use
the notation ng of Construction 3.2 throughout the present paper, whenever we discuss
sheaves generically generated by spaces of sections.

Remark 3.4 (Sheaves of differentials generically generated by spaces of sections). Con-
sider the setup of Construction 3.2 in case X is a Kéhler manifold, D an snc divisor on X
and & C Qj (log D) a sheaf of logarithmic differentials. Then, there exists a sequence of
inequalities,

dimimgng < dimimg @gete < k(det&) < rank &,

where the last inequality is given by the classic vanishing theorem of Bogomolov-
Sommese'. Recall that det & is called a Bogomolov sheaf if the equality x(det &) = rank &
holds.

3.1. Functoriality. The following proposition asserts that projection to linear systems
induced by spaces of sections is functorial in inclusions of sheaves generically generated
by spaces of sections. The proof is tedious, but elementary and certainly not surprising.
We include full details for completeness’ sake.

Proposition 3.5 (Functoriality of 5. in inclusions). Let X be a compact and normal
analytic variety and let # C & be an inclusion of torsion free, coherent sheaves of Ox-
modules. Assume that F and & are generically generated by sections in F C H°(X, .7)
and E € H°(X, &), respectively. If F C E, then there exists a commutative diagram of
composable rational maps,

(3.5.1) e > P(img/lE) ““EETF"; P(imgAF),

where ng.r is a linear projection.

Notation 3.6 (Functoriality of 5, in inclusions). We will use the notation g of Propos-
ition 3.5 throughout the paper, whenever we discuss inclusions of sheaves generically
generated by spaces of sections.

Proof of Proposition 3.5. Choose a general point x € X andlet 7y,. .., 7, € E be a sequence
of sections such that the classes of 71(x),...,7,(x) form a basis of the quotient space
&y | F,. We obtain a linear injection

1 HY(X, det. ) — H(X, det&), o> 0 AT A AT,

1gee [EV92, Cor. 6.9] for the projective case and [LMN*25, Sect. 6] for a discussion of the vanishing theorem
in the non-projective Kahler setting
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Observing that the injection i, restricts to a linear injection between the images of the
A-operators, we obtain a commutative diagram of linear injections,

img A — H°(X, det &)

Iz |img/1F]\ ]\‘T

img A —— H°(X, det.Z),

and hence a diagram of composable rational maps between the projectivizations,

e
//”//’ 0 T ;

X ____tp;et_g___) P(H (X, detéo)) ___pr_oj_ec_tign__» P(lmgAE)

| |
(3.7.1) 5| VP (i g )

¥ ¥

X :::fdgtf’___> IP(HO(X, detﬂ’)) __BTJECEO_“_-K P(img/h:),

T

whose right square commutes by construction. We are done once we prove that the left
square of (3.7.1) also commutes. To this end, let x € X be a general point. Identify-
ing points of projective spaces with codimension-one subspaces of the underlying vector
spaces, we have

@aete(x) = {p € H'(X, det&) : p(x) =0}
Qdet 7 (x) = {0' € HO(X, det.Z) : o(x) = 0}
and then
P(ir) (@aets (%)) = 17 {p € H*(X, det&) : p(x) =0}
= {0' € HO(X, det.Z) : (GATIAAT)(x) = 0}.

But since x is general and since forming a basis is a Zariski open property, the choice of
7. guarantees that

c(x) =0 (6 AT A+ ATy)(x) =0, foreveryo e H'(X, det.F),
which is the desired commutativity statement. O

For later use in Section 6, we remark that Proposition 3.5 applies in a setting where
the larger sheaf is obtained as a finite sum of subsheaves.

Corollary 3.8 (Sums of sheaves generically generated by spaces of sections). Let X be a

projective manifold and let 71, . . ., %, C & be inclusions of torsion free, coherent sheaves of

Ox-modules. Assume that the #, are generically generated by sections in Fs € H°(X, Z.)

and set

Fi=) FiCE  Fi=) FCH(X &)

Then, .# is generically generated by sections in F and there exists a commutative diagram
of composable rational maps,

(381) X =Tl - ; P(img/lp) ----- === P(img/lpl) XX P(img/lpa).

In particular, we have

(3.8.2) dimimgnr > dimimgng, X - X yF,.
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Proof. The assertion that .% is generically generated by sections in F is clear. Apply Pro-
position 3.5 to the subsheaves .#, C .% and take i := gpp, X - - - X np f,. Inequality (3.8.2)
follows from commutativity of (3.8.1), which guarantees that the image of nr dominates
the image of 5, X -+ X BE,. O

4. EXTENSION OF ADAPTED REFLEXIVE DIFFERENTIALS, ProOF oF THEOREM 1.6

Theorem 1.6 asserts that reflexive 1-forms on dlt C-pairs extend to log resolutions of
singularities. Sections 4.1 and 4.2 make this statement precise and compare the notion
to the “pull-back” discussed in [KR24a, Sect. 5]. The subsequent Section 4.3 provides ele-
mentary extendability criteria, which are then applied in Section 4.4 to prove Theorem 1.6.

4.1. Definition. The extension problem for adapted reflexive differentials considers a
cover X ofa C -pair, a resolution X of the singularities and asks if every adapted reflexive
differential comes from a logarithmic differential on X. We consider the following setting
throughout the present section.

Setting 4.1 (Extension of adapted reflexive differentials). Given a C-pair (X, D), consider
sequences of morphisms of the following form,

. 7, log resolution of ()A(, v LDJ) .
(4.1.1) X » X

Write

Y, g-morphism

>

X° = freg N y_l(Xreg \ supp D)
and observe that X° is a non-empty, Zariski open subset of X.

Remark 4.2 (Sheaves of reflexive log differentials). Maintain Setting 4.1. If p € N is any
number, we consider the natural sheaves of reflexive log differentials,

(4.2.1) Qg’({aw c Qg’J (logy* D))
(4.2.2) ,0% (log 'y D]) € QI (logy* D).

We refer the reader to [KR24a, Sect. 4.2] where Inclusion (4.2.1) is discussed at length.
Inclusion (4.2.2) exists because the sheaf on the left is torsion free and agrees with the
reflexive sheaf on the right on the big open set where the resolution map 7 is isomorphic.

Definition 4.3 (Extension of adapted reflexive differentials). Let (X, D) be a C-pair and
let p € N be any number. Say that adapted reflexive p-forms on (X, D) extend to log
resolutions of singularities if for every sequence of the form (4.1.1), we have

(r] P *
(4.3.1) Q(X’D’y) - ﬂ*QX(logﬂ v'LD]).

Remark 4.4 (Sheaves in Definition 4.3). Recall from Remark 4.2 that the sheaves on the
left and right are subsheaves of Q)[Af] (logy*|D]). Inclusion (4.3.1) is therefore meaningful.

The word “extension” in Definition 4.3 is justified by the following remark.

Remark 4.5 (Extension of globally defined adapted reflexive differentials). Assume that
Inclusion (4.3.1) of Definition 4.3 holds. If

=~ _ 0% olpl 0(% olpl -
geH'(X. Q' ) CH(X, Q' (logy"LD))).
is any adapted reflexive p-form, then there exists a logarithmic differential

g e H'(X, Q% (logn*y* (D))

that agrees over ()? ,Y"LD])snc with the pull-back of &.
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Proposition 4.6 (Independence of the resolution). Let (X, D) be a C-pair and let p € N
be any number. Then, the following statements are equivalent.

(4.6.1) Inclusion (4.3.1) holds for every sequence of the form (4.1.1),
(4.6.2) Inclusion (4.3.1) holds for one sequence of the form (4.1.1).

Proof. Given that any two log resolutions are dominated by a common third, the subsheaf
T Qf? (log z*y*|D]) C Qg] (logy*LD]) does not depend on 7. i

4.2. Relation to the literature. For locally uniformizable pairs?, Section 5 of the ref-
erence paper [KR24a] discusses “pull-back”, a concept closely related to the “extension”
of Definition 4.3. The definition of “pull-back” replaces sequences of the form (4.1.1) by
sequences where 7 is an arbitrary morphism from a smooth space, and replaces Inclu-
sion (4.3.1) by the existence of a pull-back morphism “d¢o7” that generalizes the standard
pull-back of Kahler differentials. The following proposition relates these notions for later
reference.

Proposition 4.7 (Extension as a pull-back property). Let (X, D) be a C-pair and letp € N
be any number. Adapted reflexive p-forms on (X, D) extend to log resolutions of singularities
if and only if for every sequence of the form (4.1.1), there exists an injective sheaf morphism

dem:m Q(X’D)Y) — Qi(logﬂ Y LD])

that agrees on the Zariski open set w1 (X°) with the standard pull-back of Kihler differen-
tials.

Proposition 4.7 will be shown below. The phrase “that agrees [...] with the standard
pull-back of Kahler differentials” might require an explanation.

Explanation 4.8 (Agreeing with the standard pull-back of Kihler differentials). In the setup
of Proposition 4.7, consider the non-trivial open set

XO = X\reg N }/_l (Xreg \ supp D)

and recall from [KR24a, Ex. 4.6] that on X °, the sheaf of adapted reflexive differentials
take the simple form
[1] _ kN1
Qxpplxe =1,
In particular, Q&] Do) |xe is a subsheaf of the sheaf of Kahler differentials Q}(o. A sheaf
morphism dcr agrees on 77! (5(\ °) with the standard pull-back of Kihler differentials if
there exists a commutative diagram of sheaves on 771(X°),

[+]ol1]
i Q(X,D,Y) 71(X°)

! |

7% )*Ql A
77H(X°) X standard pull-back ! - 1(Xe)’

dcﬂ' 1 =
——— Q_(logD ‘ .
~(log )n—1<x0)

Proof of Proposition 4.7. Assume that a sequence of the form (4.1.1) is given. If adapted
reflexive p-forms on (X, D) extend, the pull-back of Inclusion (4.3.1) gives a morphism

rolt] | c x'mol (logn'y’ D)) — 2 (log 'y’ D)),

2Locally uniformizable pairs are C-pairs with particularly simple singularities, akin to quotients of pairs
with reduced, normal crossing boundary divisor. We refer the reader to [KR24a, Sect. 2.5.1] for the definition
and a detailed discussion.
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]

which factors via the reflexive hull 7[*1Q!? because the sheaf on the right is locally

(X.D,y)
free. Conversely, if a sheaf morphism of the form d¢ 7 is given, we have inclusions
[p] *lp] [*]1 olp]
Q(X’D’y) C m.m Q(X,D,y) C . Q(X’D’y)
C m, Qg(log 7'y*LD]) Inclusion m.der
- Q)[Af] (logy*LDJ) Inclusion (4.2.2)
as required in Definition 4.3. O

Corollary 4.9 (Extension of adapted reflexive form on locally uniformizable pairs). Let
(X,D) be a C-pair and let p € N be any number. If (X, D) is locally uniformizable, then
adapted reflexive p-forms on (X, D) extend to log resolutions of singularities.

Proof. Given any sequence of the form (4.1.1), recall from [KR24a, Sect. 5] that there exist
injective sheaf morphisms

L] [P] P % %
dem:m Q(X,D,y) — Q}?(logﬂ Y LD])

that agree on 77! (X°) with the standard pull-back of Kéhler differentials. O

4.3. Extension Criteria. This section establishes criteria to guarantee extension of ad-
apted reflexive differentials. To begin, we note that extendability is a local property. The
elementary proof is left to the reader.

Proposition 4.10 (Local nature of the extension problem). Let (X, D) be a C-pair, let
p € N be a number and let (Uy)gea be a covering of X by sets that are open in the analytic
topology. Then, the following statements are equivalent.

(4.10.1) Adapted reflexive p-forms on (X, D) extend to log resolutions of singularities.
(4.10.2) Adapted reflexive p-forms on (Uy, D|y,) extend to log resolutions of singularities,
for every a € A. O

As an almost immediate corollary of the stratified extension results of Appendix A, we
find that adapted reflexive differentials extend if they extend outside a high-codimension
subset.

Proposition 4.11 (Restriction to very big open sets). Let (X, D) be a C-pair, let p € N be
a number and let Z C X be an analytic subset of codimy Z > p + 2. Then, the following
statements are equivalent.
(4.11.1) Adapted reflexive p-forms on (X, D) extend to log resolutions of singularities.
(4.11.2) Adapted reflexive p-forms on (X \ Z, D|x\z) extend to log resolutions of singular-
ities.
Proof. Only the implication (4.11.2)=(4.11.1) is interesting. Assuming that adapted re-
flexive p-forms on (X \ Z, D|x\z) extend to log resolutions of singularities, consider a
sequence of morphisms as in (4.1.1) of Setting 4.1. We need to check Inclusion (4.3.1) of
Definition 4.3. To this end, consider the inclusion  : y~1(X\Z) — X. Assumption (4.11.2)
will then give inclusions between sheaves

I*Qg(],D,y) C i Qf?(log 7*y*|D]) C t*Q)[Af] (logy*LDJ).

Since the push-forward i, preserves inclusions, we obtain

(4.11.3) [*I*Qg(J,D)y) c l*l*ﬂ*Q‘;(log T'y*|D]) l*[*QgJ (logy*|D]).
But reflexivity shows that
* Pl _ olrl
Ly = Lxny)

L' QI (logy* | D)) = QI (log y* D)
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and Corollary A.2 of Appendix A gives
11" 7T Q’% (log 7*y*|D]) = 7. Qf?(log 7'y*|LD]).
This presents (4.11.3) as a reformulation of the desired Inclusion (4.3.1). O

Taken at face value, Definition 4.3 (“Extension to log resolutions of singularities”) re-
quired us to check every sequence of the form (4.1.1). The following proposition simplifies
the task, showing that it suffices to consider sequence where the g-morphism y is adapted.

Proposition 4.12 (Restriction to adapted g-morphisms). Let (X, D) be a C-pair and let
p € N be any number. Assume that for every sequence of morphisms of the following form,

= p, log resolution of (X,5*|D]) = 8, adapted q-morphism
X » X » X,

there is an inclusion

(4.12.1) olfl < p.Q(log p"6" | D)).

Then, adapted reflexive p-forms on (X, D) extend to log resolutions of singularities.

Proof. Recall from Proposition 4.10 that the extension property is local on X. We may
therefore assume without loss of generality that X is Stein and that the divisor D has
only finitely many components. By [KR24a, Lem. 2.36], this implies the existence of an
adapted cover, say p : W > X.

In order to verify the conditions spelled out in Definition 4.3, assume that a sequence
of morphism is given as in (4.1.1) of Setting 4.1. Next, construct a diagram of the following
form,

p, equivariant log resolution 8, adapted g-morphism

Y » Y > X
q, gen. finite q, Galois cover
X » X > X
7, log resolution Y, g-morphism

To spell the construction out in detail:

e In order to construct the rlght square, consider the fibre product W xx X and take
Y as the Galois closure over X. The natural morphism & will then factor via y and
is then, by [KR24a, Obs. 2.27], itself adapted. The natural morphism gq is a cover
because p is. Denote the Galois group by G.
e In order to construct the left square, let p be a G-equivariant log resolution of the
G-variety X x 3 Y.
The desired inclusion (4.3.1) will now follow from standard considerations involving G-
invariant push-forward:

ol = (a0, 5>)G by [KR24a, Lem. 4.20]
c (q*p* Q‘;(log pro* I_DJ))G Assumption (4.12.1)
= (7[*2]'* Q‘;(Iog pro* LDJ))G Commutativity
=T, (?j* Qg(log pro” LDJ))G G-invariance
= T, Qf?(log 7*y*|D])

The last equality is a standard fact of the geometry of logarithmic pairs, but also follows
from [KR24a, Lem. 4.20], using that p*§*| D] and ¢*7*y*| D] have identical support. O
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We conclude with a proposition showing extension of adapted reflexive p-forms on
pairs admitting particularly nice covers, called “perfectly adapted” in [Nu24, Def. 10].

Proposition 4.13 (Extension on existence of good covering spaces). Let (X, D) be a C-
pair and let p € N be any number. Assume that there exists a strongly adapted cover y :
X — X where X is smooth and Y LD] has snc support. Then, adapted reflexive p-forms on
(X, D) extend to log resolutions of singularities.

Proof. Using the existence of y, Nufiez has shown in [NG24, Lem. 21] that the conditions
of Proposition 4.12 hold. O

4.4. Proof of Theorem 1.6. Proposition 4.11 allows removing algebraic subsets Z c X

of codimension codimy Z > 3. By [Gral5, Prop. 6.19], we can therefore assume that the

following dichotomy holds for every point x € X.

(4.14.1) The point x is contained in X° := X \ supp|D].

(4.14.2) There exists an algebraic neighbourhood U = U(x) C X and strongly adapted
cover y : U —» U where U is smooth and y*LD] has snc support.

Recalling from Proposition 4.10 that the extension problem is local, we may assume that
one of the following holds.

(4.14.3) We have | D] = 0.

(4.14.4) There exists a strongly adapted cover y : X — X where X is smooth and YLD
has snc support.

In Case (4.14.3), Nufiez has shown in [Nu24, Thm. 1] that the assumptions of Proposi-

tion 4.12 hold. In Case (4.14.4), the claim follows from Proposition 4.13. O

5. BOGOMOLOV SHEAVES AND LINEAR SYSTEMS IN REFLEXIVE G-SHEAVES

5.1. The Kodaira dimension for sheaves of adapted reflexive differentials. Before
presenting the main result of the section in Proposition 5.1 below, we recall the notion of
“C-Kodaira-litaka” dimension in brief for the reader’s convenience. Full details are found
in [KR24a, Sects. 4 and 6.2].

5.1.1. Tensors on manifolds. If X is a manifold, classic geometry considers the symmetric
algebra of tensors on X. Technically speaking, one considers sheaves Sym”™ Qf( together
with symmetric product maps. In particular, if £ C Qf( is saturated of rank one, then .#
isinvertible and the symmetric product sheaf Sym” .# is a saturated subsheaf of Sym” Qf(.

5.1.2. Adapted reflexive tensors on C-pairs. If (X, D) is a C-pair and y : X - X is a cover,

the theory of C-pairs considers the symmetric algebra of “adapted reflexive tensors” on

[n] o lp]

X. Technically speaking, one considers sheaves Sym c together with symmetric

(X.D.y)
product maps. In particular, if ¥ C Qg’(J D) is saturated of rank one, then .Z is reflexive
and Sym!™ Z is a subsheaf Sym[cn] Q{f(] Dy’ In contrast to the manifold setting, this sheaf

need not be saturated however, and one defines the C-product sheaf

[n] [n] Hlp]
Sym, "' & C Sym, Qixpy)

as the saturation. One can then consider the set

M = {m eN ho()?, Symgn] f) > 0}

and define the C-Kodaira-Iitaka dimension as

Ko () = {maxmeM {dimimg (PSym'C’”]z} iﬁ ;e((;)
- 1 =),

where ® denotes Zariski closure in P°.
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5.2. Comparing C-Kodaira dimensions for sheaves on different covers. Every-
thing said in Section 5.1.2 depends on the choice of the cover y. Given that any two
covers are dominated by a common third, the main result of the present section explains
what happens under a change of covers.

Proposition 5.1 (C-Kodaira dimension of sheaves of adapted differentials). Let (X, D)
be a C-pair, where X is compact. Assume we are given a sequence of covers,

Y, cover
X, /xl\& X,

a, Galois cover B, cover

where a is Galois with group G. If p, d are any two numbers, then the following statements
are equivalent.

(5.1.1) There exists a reflexive sheaf #; C QE?(]D 5 of rank one withkc (%) > d.

(5.1.2) There exists a reflexive G-subsheaf F, C QEf(]D " of rank one with k¢ (F,) = d.

Proposition 5.1 will be shown in Section 5.4 on page 17. As an immediate corollary,
we obtain a slight generalization of Graf’s version of the Bogomolov-Sommese vanishing
theorem, [Gral5, Thm. 1.2]. Following the literature, we extend the notion of a “Bogomo-
lov sheaf” to this context.

Corollary 5.2 (Bogomolov-Sommese vanishing for G-sheaves of adapted differentials).
Let (X, D) be a log-canonical C-pair where X is compact Kihler. Ify : X » X is any cover
that is Galois with group G, if p is any number and F; C QEQD,Y) any G-subsheaf of rank
one, then k¢ (%) < p.

Proof. Apply Proposition 5.1 in case where = Idx and recall from [KR24a, Thm. 6.14]

that if .7, C QE?(],D,Idx) is coherent of rank one, then k¢ (%#,) < p. O

Definition 5.3 (Bogomolov G-sheaf, cf. [KR24a, Def. 6.15]). In the setting of Corollary 5.2,
call #, a Bogomolov G-sheaf if the equality k¢ (-%1) = p holds.

The existence of Bogomolov G-sheaves ties in with the notion of “special” C-pairs. We
refer the reader to [KR24a, Def. 6.16] for the definition used here and for references to
Campana’s original work.

Corollary 5.4 (Special pairs have no Bogomolov G-sheaves). Let (X, D) be a special C-

pair. If y : X —>» X is a Galois cover and if p is any number, then there are no Bogomolov

[r] O

G-sheaves in Q(X,D’Y).

Note that the definition of “special” in [KR24a, Def. 6.16] implies that X is compact
Kahler and that (X, D) is log-canonical.

5.3. Linear systems in reflexive G-sheaves. To prepare for the proof of Proposi-
tion 5.1, the following Proposition 5.6 considers a Galois cover g : X —» Y, a rank-one
G-sheaf .2 on X and compares the rational map ¢ : X --> P°® to the rational maps
induced by the G-invariant push-forward of the reflexive symmetric products,

(5.5.1) (p(q* SymI"l:f)G ;Y -»>P*, forneN.
To make sense of (5.5.1), recall that the sheaves (q. Sym!" & )G have rank one by con-
struction and are reflexive by [GKKP11, Lem. A.4]. For consistency with the literature we
quote, Proposition 5.6 speaks about the reflexive symmetric product of .. Since .Z has
rank one, we have Sym!™ .# = #1971 and could equally well speak about the reflexive
tensor product.
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Proposition 5.6. Let X be a compact, normal analytic variety and let G be a finite group
that acts holomorphically on X, with quotient q : X - X /G. Let £ be a torsion free G-sheaf
of rank one. Ifh0 (X, 3) > 0, then there exists a number n € N* such that

dimimg ¢ < dimimg (p(q* symlr! j)c .
Proof. The proof is tedious but elementary, and might well be known to experts working
in invariant theory. We include full details as we are not aware of a suitable reference.

Step 1: Setup. The group G acts linearly on L = H’(X, .¢) and on its projectivization P(L),
in a way that makes the map ¢ ¢ equivariant. Consider the quotient gp : P(L) -» P(L)/G,
choose a very ample line bundle .77 € Pic(P(L)/G) and take n € N as the unique number
satisfying Op(r)(n) = q; /. We obtain an identification

(5.6.1) HY(P(L)/G, #) = H'(B(L), Op(1)(n))® € H*(P(L), Op(r)(n))
and hence a commutative diagram of composable meromorphic maps as follows:

oy Op(r)(n): finite

¢
X oo > B(L) B(H(B(L), Go ()
|
(5.6.2) q, finite qp. finite :y, linear projection

¢

X/G ____q);____> P(L)/G ‘W) P(HO(P(L)/G’ ‘%ﬂ))

Here,

e the meromorphic map (¢.¢)¢ is the induced map between the quotients, given that
¢ is G-equivariant,
e the meromorphic map y is the linear projection induced by (5.6.1) above.

Step 2: Identifications. The linear spaces of Diagram (5.6.2) come with natural identific-
ations and inclusions, which allow expressing some compositions as maps induced by
incomplete linear systems. As a variant of (5.6.1), we are interested in the identification

(5.6.3) H°(P(L), Opry(n)) = Sym" L € H°(X, Sym!" 2),
and its G-invariant version,

H'(P(L)/G, ) = H'(P(L), Op1)(n))° by (5.6.1)
(5.6.4) = (Sym" L)° by (5.6.3)

c H'(X, Sym!" £)¢
= HO(X/G, g (Sym!™! X)G)

Observe that (5.6.4) identifies the composed map ¢_ o (¢.#)® of Diagram (5.6.2) with the
map

?(sym 1), g (symin 2)° :X/G > P (HO(X/G’ g.(Sym!"! «iﬂ)G))~

Step 3: End of proof. In summary, we find

dimimg ¢y = dimimg @z o qp o ¢ Finiteness
= dimimg ¢ o (pn)Coq Diagram (5.6.2)
= dimimg ¢ o (qo,;f)c Finiteness
= dimimg (p(Sym" L)G’ g (symi"! f)c Step 2

< dimimg ¢ Linear subsystem O
q

i (Sym[”] 2’)6
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5.4. Proof of Proposition 5.1. We consider the two implications separately.

Implication (5.1.1) = (5.1.2). Given .%; C Ql?! set %, := al*1.%, and observe that

(X.D.p)’

%, is indeed a G-subsheaf of the G-sheaf Qg(] D)’ Next, recall from [KR24a, Obs. 4.14]

that the standard pull-back of Kéhler differentials extends to inclusions

[n] g lp)

[n] o lp]
C “(X.D.B) Q

[*]
a'™ Sym C (X.Dy)’

< Sym for every n € N.

In particular, we find inclusions

al*! SymlcflJ T > SymlcnJ "z, = SymlcnJ Z,, foreveryneN.

It follows that k¢ (%2) = kc(%#1) = d, as required. O

Implication (5.1.2) = (5.1.1). Given a G-subsheaf .7, C QEQ]D e consider the invariant

push-forward sheaves
& = (o Sym[g] 92)6, for every n € N.

These sheaves come with inclusions

[n] lp)

[n] 5lp] G _
Q ) = Sym,, XD.f)

(5.7.1) én S (@ Symg" Qe

for everyn e N
(5.7.2) én C Symé"] & for every n € N.

The equality in (5.7.1) is shown in [KR24a, Lem. 4.20]. Inclusion (5.7.2) follows because
[n] o lp]

C Q(X,D,/i’)
side of the inclusion agree over the dense, Zariski open set

SymglJ & is saturated inside Sym by definition, and because the left and right

(a(gz,reg) N il,reg N ﬁ_l (Xreg)) \ ﬁ_l (supp D)'

With these preparations at hand and taking .#; := &), we find numbers n,m € N such
that the following holds.

d < kc(F) Assumption
= dimimg Psymim! 7, Definition of k¢
< dimimg ¢ Proposition 5.6

G
a. (Sym["] SymlcmI fg))

< dimimg q)a* (Symlc’"'"' %))c [KR24a, Obs. 4.11]
< dimimg wsymé\m-nl 7 (5.7.2)
< kc(F) Definition of k¢ O

6. INVARIANT BOGOMOLOV SHEAVES DEFINED BY STRICT WEDGE SUBSPACES

Let X be a compact Kdhler manifold and let D be a reduced snc divisor on X. As-
sume that a finite group G acts on (X, D). Inspired by constructions introduced in
[Ran81, Cat91] to generalize the classic Castelnuovo-De Franchis theorem, we show how
an abundance of logarithmic one-forms on X can be used to construct G-invariant Bogo-
molov sheaves, even in cases where no G-invariant differential exists.
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6.1. Strict wedge subspaces. Strict wedge subspaces, as defined in [Cat91], are the key
concept of the present section.

Definition 6.1 (Strict wedge subspaces, [Cat91, Sect. 2]). Let X be a compact com-
plex manifold and let D € Div(X) be a reduced snc divisor. Let k € N be a number
and V < H°(X, Qy(log D)) a linear subspace. We call V a strict k-wedge subspace of
H°(X, Q} (log D)) if the following conditions hold.

(6.1.1) The dimension of V is greater than k. In other words, dimV > k.

(6.1.2) The natural map NV — H(X, QX (log D)) is injective.

(6.1.3) The natural map N**'V — H°(X, QK+ (log D)) is identically zero.

Remark 6.2 (Strict wedge subspaces for special values of k). Assume the setting of Defin-
ition 6.1.

(6.2.1) Ifdim V = k+1, then every element of AKV is a pure wedge, and Condition (6.1.2)
can be reformulated by saying that no k-tuple of linearly independent 1-forms

in V wedges to zero.
(6.2.2) If dim X < k, then Condition (6.1.3) holds automatically.

Notation 6.3 (Sheaves of differentials induced by strict wedge spaces). Assume the setting
of Definition 6.1. If V is a strict k-wedge subspace of H*(X, Q} (log D)), write

for the sheaf of 1-forms that can locally be written as linear combinations of forms in V.

Remark 6.4 (Sheaves of differentials induced by strict wedge spaces). Observe that the
sheaf ¥ of Notation 6.3 is (generically) generated by sections in V. Condition (6.1.2)
guarantees that its rank equals k.

The following proposition guarantees that strict wedge subspaces exist as soon as there
are sufficiently many one-forms.

Proposition 6.5 (Existence of strict wedge subspaces). Let X be a compact complex mani-
fold, let D € Div(X) be a reduced snc divisor, and let V. C H°(X, Q;((log D)) be a linear
subspace of dimension dimV > dim X. Then, there exists a number k € N* and a strict
k-wedge subspace V' C V of dimension dimV’ = k + 1.

Proof. Consider the following set of natural numbers,

K := {t’ € N : Jlinearly independent elements o1,...,0p41 € V
with vanishing (£ + 1)-form, o1 A= Aop1 =0 € HO(X, Qggl(logD))} cN.

Observe that the assumption dim V' > dim X guarantees that K is not empty. Let k be
the minimal element of K| let oy,...,0%+; € V be linearly independent elements with
vanishing k + 1-form, oy A -+ A 041 = 0, and let V’ be the linear subspace spanned by
the o,

V' :={o1,...,0r) C V.

The definition of K together with Item (6.2.1) of Remark 6.2 guarantees that V” is indeed
a strict k-wedge subspace, as desired. O

6.2. Linear systems defined by strict wedge subspaces. If V a strict wedge subspace,
the next proposition describes the foliation induced by the meromorphic map ny intro-
duced in Section 3, effectively bounding its dimension from below. This result is key to
all that follows.
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Proposition 6.6 (Linear systems defined by strict wedge subspaces). Let X be a compact
Kdhler manifold, let D € Div(X) be a reduced snc divisor, and let V C H°(X, Q;((log D))
be a strict k-wedge subspace. Write V.C H°(X, V'), where ¥ C Q} (log D) is the sheaf
introduced in Notation 6.3, and consider the meromorphic map
ny : X - P(img Ay)

of Construction 3.2. Then, differentials in V annihilate the foliation ker(ny) C Jx defined
bynv.

Reminder 6.7 (Notation used in Proposition 6.6). We refer the reader to Definitions 2.22

and 2.24 for the precise meaning of the conclusion that “differentials in V annihilate the
foliation defined by ny”

We prove Proposition 6.6 in Section 6.3 on the next page. Before starting the proof, we
draw a number of corollaries that will be instrumental when we establish Theorem 1.3 in
Section 7 below.

Corollary 6.8 (Linear systems defined by strict wedge subspaces). In the setup of Propos-
ition 6.6, the image of the rational map ny has dimension dimimg ny = k.

Proof. If
o = ker(Qk(logD) — Homg, (ker nv, ﬁX(D))) - Q;((logD)

is the annihilator of the foliation defined by ny and if ¥ C Q} (logD) is the sheaf of
differentials introduced in Notation 6.3, then Proposition 6.6 asserts that ¥ C 7. In
particular, we find that

k =rank 7 < rank &/ = dimimgny.
The converse is shown in Remark 3.4. O
Corollary 6.9 (Linear systems defined by strict wedge subspaces). Assume the setup of

Proposition 6.6. Then, there exists a dense open subset X° C X where the rational map ny is
well-defined and ¥ = img dny . O

Corollary 6.10 (Sums of sheaves of differentials defined by strict wedge subspaces).
Let X be a compact Kahler manifold, let D € Div(X) be a reduced snc divisor, and
let Vi,...,Va € H°(X, Q) (logD)) be strict wedge subspaces, with associated sheaves
Y., Ve C Q4 (logD) of differentials. Write V' := 3, %; € Qj.(logD) and consider
the determinant det ¥ C Qg?nk'y/(log D). Then,

rank ¥ = dim img @4t v -
In particular, det V" is a Bogomolov sheaf in the sense of Remark 3.4.
Proof. SetV := Y, V; € H*(X, Q) (log D)) and consider the rational map

n=nvy X Xnvg

x LTI ) P(img}tvl) x«--xP(img/lVa).

Combining results obtained so far, there exists an open subset X° C X where all maps
encountered so far are well-defined and the following chain of (in)equalities holds.

rank ¥ =rank }; #|x- = rank }}; img(dny,|x-) Corollary 6.9
= rank img(dn|x-) Lemma 2.7
= dimimgn
< dimimg 1y Corollary 3.8
< dimimg @get v Remark 3.4

The converse inequality, dim img ¢q4et v < rank ¥/, holds by Remark 3.4. O
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Corollary 6.11 (Invariant Bogomolov sheaves defined by strict wedge subspaces). Let X
be a compact Kihler manifold, equipped with a holomorphic action of a (possibly infinite)
group G. Let D € Div(X) be a reduced snc divisor that is G-stable. Assume that X admits a
strict wedge subspace V. C H°(X, Q) (log D)) with associated sheaf ¥ of differentials, and
write W = Ygec g° V. Then,

rank # = dimimg @get » -
In particular, det(#) € Q;?nk”/(log D) is a G-invariant Bogomolov sheaf.
Proof. The Noetherian condition guarantees that 3, g*7" is in fact a finite sum. O

6.3. Proof of Proposition 6.6. For the reader’s convenience, we subdivide the proof
into steps.

Step 0: Simplification and Notation. The definition of “strict k-wedge subspace” guarantees
that every linear subspace V' C V is again a strict k-wedge subspace, as long as dimV’ >
k. The factorization found in Proposition 3.5,

X =2l ; P(imng) Tt P(imgﬂtw),

equips us with an inclusion of the foliations defined by 5y and 5y,
ker(nv) € ker(nv'),
which allows us to assume the following.

Assumption w.l.o.g. 6.12. The dimension of V equals k + 1.

Resolving the indeterminacies of v by a suitable blow-up, 7 : X — X and replacing
V € H°(X, Q) (log D)) by its pull-back (dr)(V) € H(X, Q;?(log 7*D)), we may assume
the following.

Assumption w.l.o.g. 6.13. The meromorphic mapping 5y is in fact holomorphic.

Denote the image variety by Y := imgy C P(img Ay) and let Y° C Y be the maximal
open subset over which the morphism 7y is a proper submersion.

Step 1: Coordinates. We will work with explicit coordinates and choose an ordered basis
01, ...,0ks1 € V. A natural ordered basis of AKV is then given as

(LA A G A+ AOksi)i<jeker € AV

——

delete
Use this basis to identify P(img Ay) = P(A¥V) = P* and use homogeneous coordinates
[%1 : -+ : xg41] to denote its points. This choice of coordinates allows writing 7y in terms
of concrete functions. To make this statement precise, observe that the forms oy, . . ., 0k41
span the rank-k sheaf ¥ generically. Consequently, there exist meromorphic functions
ai, ..., o € A (X) such that

k
(6.14.1) Oyl = Z aj - oj.
j=1

This implies in particular that

OLA A T A AOkp = (-1)k “aj-oy AN--- Aoy, foreveryindex j < k.
——
delete
OntheopensetU C X where the ay, . . ., ax are regular, the morphism ny is thus described
as
wlo:U—=P5 xo [(-DF e a(x) s (DR () 1 1]
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Step 2: Forms on Fibres. Given any point s € Y° \ {xx; = 0}, writes = [y : -+ : yg : 1]
and consider the holomorphic differential form

k
i=1

Linear independence of oy, ..., 0k4; guarantees that 7; does not vanish identically on X.
Equation (6.14.1) however guarantees that 7, vanishes identically along the fibre X :=
1y (s). Proposition 2.21 then guarantees that 7, annihilates the foliation defined by nv
over the open set 7y, (Y°) and hence everywhere.

Step 3: Non-degeneracy of the image. The construction of 7y guarantees that the image
variety Y is not linearly degenerate inside PX. In other words, Y is not contained in any
linear hyperplane. If (s1,...,sx) € (Y°\ {x¢gs1 = O})Xk is a general k-uple of points,
written as s; = [y;1 : -+ - : ik : 1], then non-degeneracy implies that

Wit Y1k Vs o (Y15 - > Yiyro 1) € CFF

are linearly independent vectors. The holomorphic forms

k
Ts; i= Oft1 — Z(—l)kﬂ' “Yij O
=1
are likewise linearly independent, hence form a basis of V, and annihilate the foliation
defined by 5y O

7. BOUNDS ON INVARIANTS, PROOF OF THEOREM 1.3 AND COROLLARY 1.7

7.1. Proof of Theorem 1.3. We prove the contrapositive: assuming that (X, D) is an
n-dimensional C-pair with irregularity ¢* (X, D) > n satisfying the assumptions of Theo-
rem 1.3, we will show that (X, D) is not special.

Step 1: Setup. The assumption that g* (X, D) > n allows choosing a Galois cover y :
X — X with irregularity (X, D,y) > n. Fix one such cover throughout and denote its
Galois group by G. Consider the reduced divisor D := (y*|D])req and let 7 : X — X be a
G-equivariant, strict log resolution of the pair (i , 5)

= 7, resolution

(7.1.1) X

y, cover

~
» X » X.

The preimage 7~ (supp D) is then G-invariant, of pure codimension one and has simple
normal crossing support. Let D € Div(X) be the associated divisor. The pair (X, D) is
snc, and the sheaf Q;?(log D) is a G-sheaf.

Claim 7.2. There exists an injective sheaf morphism

der - ”[*]Q&],D,y) — Q%(logﬁ)

that agrees on the Zariski open set 77! (X°) with the standard pull-back of Kahler differ-
entials, in the sense discussed in Explanation 4.8.

Proof of Claim 7.2. We consider the alternative assumptions of Theorem 1.3 separately. In
case (1.3.1), where (X, D) is locally uniformizable, this is [KR24a, Fact 5.9]. In case (1.3.2),
where X is projective and (X, D) is dlt, this is Theorem 1.6, in the formulation given by
Proposition 4.7. O (Claim 7.2)

By minor abuse of notation, we suppress dc from the notation and view 7*! QE;(] Dy)
as a G-subsheaf of the G-sheaf Q)l?(log D).
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Step 2: An invariant Bogomolov sheaf on X. We know by assumption that

X Aol ) =1 (X o, ) =aX.D.y) > n

Use Proposition 6.5 to find a number p and a strict p-wedge subspace

Ve H (X, 2"l ) ¢ H'(X, QL (log D))

with the associated sheaf ¥ C gl

x.ny) S Q;?(log D) of differentials. Denoting the

sum of the pull-back sheaves by
W= gy callall callogh),

(X.D.y)
geG
Corollary 6.11 shows that
(7.3.1) det(¥) /\[mnw]”[*]Q&],D,y) c QU™ (log D)

satisfies rank # < dimimg @4t and is hence a G-invariant Bogomolov sheaf.

Step 3: An invariant Bogomolov sheaf on X. We conclude the proof of Theorem 1.3
by exhibiting the push-forward . det # as a G-invariant Bogomolov sheaf on X. The
next claim allows viewing the push-forwards as a sheaf of adapted reflexive differentials.

Claim 7.4. There exists a natural inclusion of G-sheaves,

[rank 7] _[*] ~[1] [rank 7]
Ty A T Q(X,D,Y) Q(X,D,y) .

Proof of Claim 7.4. The sheaf on the left is the push-forward of a torsion free sheaf, and
hence itself torsion free. It agrees with the sheaf on the right over the big open set
(X, 5)reg C X where the strict resolution map x is isomorphic. In other words: denoting
the inclusion by ¢ : (X, B)reg <> X, we find an isomorphism

* [rank 7] _[*] ol1] isomorphic  , [rank #']
U A T Q(X,D,y) ! Q(X)D’y) .

Pushing forward, this gives a sequence of sheaf morphisms,

[rank 7]

. /\[rankW] ”[*]Q[l] — s /\[rank“/ﬂ] ﬂ[*]Q[ll [SEEENN l*‘*Q(XD )
Dy) 2

(X.Dyy) (X.Dyy)

.
(X.Dy) '

is reflexive, and hence equal to

O (Claim 7.4)

where injectivity of the first arrow comes from the fact that z, APK71 7151 Q

[rank 7]

torsion free. To conclude, it suffices to note that Q(XD )

[rank 7]

the last term in the sequence, ,1*Q X.Dy) °

Inclusion (7.3.1) and Claim 7.4 equip us with an inclusion of G-sheaves,

[rank #]
m.det W C Q(X,D’y) )

The natural isomorphism H 0 ()? , det 7/) =H° (i , o, det ”//) will then show that
rank # < dimimg @get = dimimg @, get -

The sheaf ., det # is thus a G-invariant Bogomolov sheaf, and the claim follows from
Corollary 5.4. This finishes the proof of Theorem 1.3. O

7.2. Proof of Corollary 1.7. Let (X, D) be a projective C-pair that is dlt. Assuming the

existence of a cover y : X - X and a rank-one sheaf . C QB(] Dy) of positive C-Kodaira-

litaka dimension, k¢ (%) > 0, we need to show that (X, D) is not special. The proof is
largely parallel to the proof of Theorem 1.3 given in the previous Section 7.1.
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Step 0: Simplifying assumptions. Given a sequence of covers,

a, cover

<

—~

(7.5.1) X » X % X,

. 77
P, Galois cover y, cover

Proposition 5.1 equips us with rank-one, reflexive subsheaf Zc Q&] Doyop) O X with

positive C-Kodaira-litaka dimension, k¢ (E ) = kc(Z) > 0. We will use this observation
to replace the cover y by higher covers with additional properties.

Step 0.1: The cover is adapted. The projectivity assumption and [KR24a, Lem. 2.36]
imply that X admits an adapted cover. An elementary fibre product construction will
then allow us to produce a Sequence (7.5.1) of covers where « is itself adapted.

Assumption w.lo.g. 7.6. The cover y is adapted and Galois, with Group G.

Step 0.2: The sheaf ¥ admits sections. The assumption on the positivity of the C-
Kodaira-Iitaka dimension, k¢ (£) > 0, equips us with number m > 0 and two linearly
independent sections

(7.7.1) 00,01 € HO()?, Sym[CmJ 3)

The right side of (7.7.1) simplifies because of Assumption 7.6. To be precise, recall from
[KR24a, Obs. 4.12] that

Sym[cm] £ =2 sothat 6,0, € HO()?, ,Z[@m]).

Standard covering constructions (“taking the m-th root out of a section”) produce a Se-
quence (7.5.1) of covers and sections

To, T1 € HO()\Z, ﬁ[*]g)
whose m-th tensor powers agree over a dense open set with the pullbacks of ¢y and o7.

Recalling from [KR24a, Obs. 4.8] that the sheaf fl*].# injects into Q&J Doyop)s W€ may

replace y by @ and make the following assumption.
Assumption w.Lo.g. 7.8. The sheaf £ admits two linearly independent sections.

Step 1: Setup. Consider the reduced divisor D= (y*LD])red and let 7 : X — X beaG-
equivariant, strict log resolution of the pair (X, D), as in (7.1.1) above. Taking D € Div(X)
as the divisor supported on 7~ (supp D), we find the following.
Claim 7.9 (Analogue of Claim 7.2). There exists an injective sheaf morphism
. gl 1 D
dem:m Q(X’D,y) — Qi(logD)

that agrees on the Zariski open set 77! (f °) with the standard pull-back of Kéhler differ-

entials, in the sense discussed in Explanation 4.8. O
Suppress dc from the notation and view 7[*] Q&] Dy 352 G-subsheaf of the G-sheaf
QL (log D).

Step 2: An invariant Bogomolov sheaf on X. Use Assumption 7.8 to define a strict
1-wedge subspace

— 0(yv [1] 0% [*]ol1] Claim 7.9 0= 1 —~
Vi=(mn) CHX Qup ) CHIX 770 ) € HY(X, Q5 (logD))

with the associated sheaf # C #[*1Ql!]

x.ny) € ng(log D) of differentials. Denoting the

sum of the pull-back sheaves by

W= Z gV C n[*m&{ay) c 0L(logD),

geG



24 STEFAN KEBEKUS, ERWAN ROUSSEAU, AND FREDERIC TOUZET

Corollary 6.11 shows that det(#') C Q;‘“kw(log D) satisfies rank # < dimimg @get
and is hence a G-invariant Bogomolov sheaf.

Step 3: An invariant Bogomolov sheaf on X. In analogy with the proof of Theo-

rem 1.3, observe that there exists a natural inclusion of G-sheaves, . det # C Qg?’g(:?],

that exhibits . det # is as a G-Bogomolov sheaf. This finishes the proof of Corol-
lary 1.7. O

Appendix
APPENDIX A. EXTENSION OF LOW DEGREE DIFFERENTIALS

Let X be a normal analytic variety and let x : X — X be a resolution of singularities.
If the singular set of X is small, codimy Xsing > p + 2 for one p € N, then Flenner has

shown in [Fle88] that p-forms extend from the smooth locus of X to p-forms on X: The
natural restriction map

0% oP 0(, -1 P\ _ g0 P
H'(X, Q) = H' (17 (Xreg), Q) = H’ (Xieg, Q)
is isomorphic. Writing ¢ : X;eg < X for the inclusion map, Flenner’s result can equival-
ently be stated by saying the natural inclusion

P * P
Q- — 10 QL
e R

is isomorphic. The proof builds on earlier work [vSS85] of Steenbrink and van Straten. It
relies on relative duality for cohomology with supports and Hodge-theoretic methods.

A.1. Main Result. The present section extends Flenner’s result to forms with log-
arithmic poles and replaces Xne with arbitrary subvarieties Z C X: If Z is small,

codimy Z > p + 2 for one p € N, then p-forms extend from X\ 77Y2) to p-forms
on X.

Theorem A.1 (Extension of low degree differentials). Let (X, D) be a logarithmic pair,
letwr : X — X bea log resolution of singularities, and let D € Div(X) be the reduced
divisor supported on w™1D. Let p € N be any number. IfZ C X is a Zariski closed subset of
codimyx Z > p + 2, then the natural restriction map

(A11) HY ()? Q” (log 5)) s H ()? \771(2), @2 (log 5))
is isomorphic.

Corollary A.2 (Extension of low degree differentials). In the setting of Theorem A.1, write
1: X\ Z — X for the inclusion map. Then, natural morphism

T Qg(log D) - ni*r, Qf?(log D)
is isomorphic. O
Theorem A.1 will be shown in Section A.4 below.

A.2. Idea of application. Theorem A.1 will typically be used in scenarios where the
singular locus X;i,; comes with a stratification and Z is a (potentially strict) subvariety
of Xiing. One can then consider restrictions,

H° ()? Qf?(logf))) < o ()? \ 77 1(2), Qf?(logf)))
L o (77! (Xoeg), (108 D)) = H (Xreg ¥ (10g D))

and ask if a given form 6° € H (Xyeg, Q% (log D)) is induced by a form on X. If one knows
that ¢° lies in the image of f (for instance, because the singularities of X are sufficiently
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mild outside the stratum Z), then Theorem A.1 might apply to show that ¢° already lies
in the image of f o a.

These ideas are put to work in Section 4.3, where we prove Theorem 1.6. There,
Z C Xing is a stratum of high codimension, such that X has no worse than quotient
singularities outside Z.

A.3. Relation to the literature. To the best of our knowledge, Theorem A.1 has not ap-
peared in the literature before. The arguments used in the proof are however not new, and
likely known among experts. Our proof combines ideas of Graf, who replaces duality for
cohomology with supports by numerical computation involving Kodaira dimension and
Bogomolov-Sommese vanishing, with work of Nuriez, who follows [KS21] by expressing
extension properties in terms of the dimension of the support of certain local cohomology
sheaves.

Despite appearance to the contrary, the results presented here are unrelated to the
general extension results of [GKKP11, KS21] that are much more difficult to prove.

A4. Proof of Theorem A.1. For completeness’ sake, we give a full and mostly self-
contained proof, combining results and ideas from [Gra21, Nu24]. The reader will note
that Steps 3-5 are copied with only minor modifications from [Gra21, p. 599f].

Step 1: Setup. The restriction map (A.1.1) is clearly injective. To show surjectivity, let
o° e H ()? \771(2), @ (log 15))

be any form. We need to find a differential form o € H° (f , Qf? (log 5)) whose restriction
to X \ 771(2) agrees with ¢°.

Step 2: Simplification. The case where D € Div(X) is the zero divisor has been worked
out by Nunez in [N124, Lem. 24]. Applying Nunez’ result to X \ supp D, we already obtain

a form on X \ 77 1(Z N D) whose restriction to X \ 771(2) agrees with ¢°. This allows
making the following assumption.

Assumption w.l.o.g. A.3. The set Z is contained in the support of D.

Since any two log resolutions of singularities are dominated by a common third, it is
clear that validity of Theorem A.1 does not depend on the choice of the log resolution 7.
Replacing 7 by a different resolution if need be, we may assume the following.

Assumption w.Lo.g. A.4. The preimage 7~!(Z) is of pure codimension one in X and has
simple normal crossing support.

Write E € Div(X) for the reduced divisor supported on 771(Z).

Step 3: Extension as a rational form. Grauert’s Direct Image Theorem, [GR84,
Chapt. 10.4], implies that the sheaf 7, Q)l? (log D) is coherent. The pull-back ¢° there-

fore extends as a meromorphic log-form 7z on X. Quantifying the poles, let G € Div()? )
be the minimal effective divisor such that there exists a section

= p ~ ~ » ~
re H' (X, 0 (1og D)(G)) = Hom (03(~G), % (log D))

whose restriction to X \ 7~ 1(Z) agrees with ¢°. Aiming to show that G = 0, we argue by

contradiction.

Assumption A.5. The divisor G is not zero.
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Minimality of G implies that G is 7m-exceptional. Since 7 is a log resolution, G will
then have simple normal crossing support. Assumption A.5 and [Gra21, Prop. 4] imply
the existence of an irreducible component P C supp G such that the invertible sheaf
0% (=G) is big when restricted a general fibre of 7|p. Minimality of G guarantees that the
restricted map of sheaves on P,

T|p : ﬁ)?(_G)iP — Qg(logD)‘P,
does not vanish.

Step 4: Residue sequence. Considering the divisor P¢ := (E—P)|p € Div(P), the residue
sequence for p-forms along P reads

0%(=6) ip

o

0 — Qb(logP*) —— Qf?(logE)Lj — Q2 (log PY) —— 0.

resp

We obtain an injection
1 O3(=G)lp — Q(log ),
for one r € {p — 1, p}. In both cases, r < p.

Step 5: Restriction to the general fibre. For brevity of notation, write B := 7 (P) and
denote the restricted morphism 7z|p by p : P — B. Next, let F C P be a general fibre of p
and consider the restricted divisor F¢ := P¢|r € Div(F). Since (P, P°) is an snc pair, so is
(F, F°). The inequality codimy Z > p + 2 implies that
dim F = dim P — dim B
(A.6.1) > (dimX - 1) —dimZ
> (dimX —1) - (dimX - (p+2)) =p+1.

Since F is general and p(F) is a smooth point of B, the restriction of the standard sequence
of relative log differentials, [EV92, Sec. 4.1], reads

0— p*QHF — Qll)(loch)|F — Q!

log P¢ 0.
p/B(Og )F_>

By [Har77, Ch. II, Ex. 5.16], it induces a filtration of Q},(log P¢)|r with quotients
prOL® Q;,;]g(logPC), i=0,...,r.
Restricting the morphism p to the general fibre F, we obtain an injection
ul s Og(=G)lr — p* QY & Q1 (log P°) = Q7 (log F) ™ %,
for one suitable number i. Projecting onto a suitable summand, we even find an inclusion
O%(=G)|r — Q;’i(logFC).

This leads to a contradiction.

e On the one hand, the classic Bogomolov-Sommese vanishing theorem, [EV92,
Cor. 6.9], implies that k (Ox(-G)|r) <r—i<r<p.

e On the other hand, the choice of G guarantees that 0z (—G) is big when restricted
a general fibre of z|p, so that x (ﬁ}?(—G)|F) = dim F. However, we have seen in
(A.6.1) that dimF > p + 1.

Assumption A.5 is therefore absurd. We conclude that G = 0, as desired. O
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