
ENTIRE CURVES IN C-PAIRS WITH LARGE IRREGULARITY
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Abstract. This paper extends the fundamental theorem of Bloch-Ochiai to the context

of C-pairs: If (𝑋,𝐷 ) is a C-pair with large irregularity, then no entire C-curve in 𝑋 is

ever dense. In its most general form, the paper’s main theorem applies to normal Kähler

pairs with arbitrary singularities. However, it also strengthens known results for compact

Kähler manifolds without boundary, as it applies to some settings that the classic Bloch-

Ochiai theorem does not address.

The proof builds on work of Kawamata, Ueno, and Noguchi, recasting parabolic

Nevanlinna theory as a “Nevanlinna theory for C-pairs”. We hope the approach might

be of independent interest.
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1. Hyperbolicity properties of pairs with large irregularity

1.1. Degeneracy of entire curves. The Albanese variety is a fundamental tool in the

study of entire curves (or rational points) in projective varieties. Its usefulness is illus-

trated by the Bloch-Ochiai Theorem.

Theorem 1.1 (Bloch-Ochiai Theorem, [Kaw80, Thm. 2]). Let 𝑋 be a projective manifold.
If the irregularity of 𝑋 is larger than the dimension, 𝑞(𝑋 ) > dim𝑋 , then every entire curve
C→ 𝑋 is algebraically degenerate. □

Reminder 1.2. An entire curve is a holomorphic morphism C → 𝑋 . An entire curve is

algebraically degenerate if the image of C is not Zariski dense in 𝑋 .

We recall the main ideas of the proof: start with the Albanese morphism 𝑎 : 𝑋 → 𝐴

and let 𝐼 ⊆ 𝑎(𝑋 ) be the largest Abelian subvariety of𝐴whose action stabilizes img(𝑎) and

consider the quotient 𝐵 := 𝐴/𝐼 . The image of𝑋 in 𝐵 is then of general type, which reduces

the problem to a study of entire curves in general type subvarieties of Abelian varieties.

With these preparations, the Bloch-Ochiai Theorem 1.1 is then an easy consequence of

the following result, which follows for instance from [NW14, Thms. 4.8.2 and 2.5.4]
1
.

Date: 2nd October 2024.

2020 Mathematics Subject Classification. 32C99, 32H99, 32A22.

Key words and phrases. C-pairs, Albanese morphism, hyperbolicity, Nevanlinna theory.

This work started during the visit of Erwan Rousseau to the Freiburg Institute for Advanced Studies, suppor-

ted by the European Unions Horizon 2020 research and innovation program under the Marie Sklodowska-Curie

grant agreement No 75434. Rousseau thanks the Institute for providing an excellent working environment.

1
See [NW14, p. 155] for further explanation.

1



2 STEFAN KEBEKUS AND ERWAN ROUSSEAU

Theorem 1.3 (Entire curves in varieties of general type). Let𝑊 be a projective manifold
of general type. If the Albanese morphism alb(𝑊 ) : 𝑊 → Alb(𝑊 ) is generically injective,
then every entire curve C→𝑊 is algebraically degenerate. □

Theorems 1.1 and 1.3 have both been generalized to the setting of logarithmic pairs

(𝑋, 𝐷), where 𝑋 is a compact Kähler manifold and 𝐷 is a reduced divisor (not necessar-

ily with simple normal crossing support). We refer the reader to [NW14, Sect. 4.8 and

Thm. 4.8.17] for precise statements and for a brief history of the problem.

1.2. Degeneracy of C-entire curves. This paper generalizes Theorem 1.1 to the setting

of C-pairs (𝑋, 𝐷), where𝑋 is a normal Kähler space and 𝐷 is a WeilQ-divisor of the form

𝐷 =
∑︁
𝑖

𝑚𝑖 − 1

𝑚𝑖

· 𝐷𝑖 , all𝑚𝑖 ∈ N≥2 ∪ {∞}.

Originally introduced under the name “geometric orbifold” by Campana, C-pairs inter-

polate between compact spaces and spaces with logarithmic boundary. By now, C-pairs

and the derived notions such as “adapted differentials” and “C-cotangent sheaves” are

standard tools in complex, algebraic and arithmetic geometry, with applications ran-

ging from the geometry of moduli spaces to the study of rational points over function

fields, [CP19, KPS22]. We recall the relevant notions in brief and refer the reader to

[KR24b, KR24a] for references and a detailed introduction.

Definition 1.4 (Entire C-curve, algebraic degeneracy). Let (𝑋, 𝐷) be a C-pair. An entire

C-curve is a holomorphic morphism of C-pairs, (C, 0) → (𝑋, 𝐷). An entire C-curve is
algebraically degenerate if the image of C is not Zariski dense in 𝑋 .

Reminder 1.5 (Morphisms of C-pairs). Morphisms of C-pairs are formally introduced and

discussed at length in [KR24b, Sect. 7ff]. In the simplest case, where 𝑋 is smooth and 𝐷

is a smooth prime divisor of the form

𝐷 =
𝑚1 − 1

𝑚1

· 𝐷1, for𝑚1 ∈ N≥2,

C-pairs impose tangency conditions reminiscent of (but different from) the morphism

𝛾 : C→ 𝑋 is a C-morphism between the C-pairs (C, 0) and tangency conditions imposed

by root stacks, [Cad07]: a holomorphic (𝑋, 𝐷) if

𝛾∗𝐷 ≥ 𝑚𝑖 · supp(𝛾∗𝐷).
In other words, every intersection point of curve 𝛾 and the divisor 𝐷 must have multipli-

city𝑚𝑖 at least (and not necessarily divisible by𝑚𝑖 as in the case of root stacks).

Reminder 1.6 (Augmented Albanese irregularity). Let (𝑋, 𝐷) be a C-pair where 𝑋 is a

compact Kähler space. Generalizing the augmented irregularity of a compact manifold,

[KR24a, Sect. 5.1] introduces the “augmented Albanese irregularity” 𝑞+
Alb

(𝑋, 𝐷), with val-

ues in N ∪ {∞}.

Theorem 1.7 (C-version of the Bloch-Ochiai theorem, see Proposition 5.2). Let (𝑋, 𝐷)
be a C-pair where 𝑋 is a compact Kähler space. If 𝑞+

Alb
(𝑋, 𝐷) > dim𝑋 , then every C-entire

curve (C, 0) → (𝑋, 𝐷) is algebraically degenerate.

Remark 1.8 (Assumptions in Theorem 1.7). Theorem 1.7 does not assume that𝑋 is smooth,

but the definition of C-pair does require that𝑋 is normal, [KR24b, Def. 2.13]. Theorem 1.7

explicitly covers the case where 𝑞+
Alb

(𝑋, 𝐷) = ∞.

Remark 1.9 (Comparison with Theorem 1.1). The irregularity of a compact Kähler mani-

fold𝑋 is never larger than the augmented Albanese irregularity of the trivial C-pair (𝑋, 0),
𝑞(𝑋 ) ≤ 𝑞+

Alb
(𝑋, 0).
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Examples show that the inequality might be strict. Even in case where 𝑋 is smooth

and 𝐷 = 0, Theorem 1.7 is therefore a priori stronger than Theorem 1.1 (and its log-

arithmic version [NW14, Thm. 4.8.17]) and could prove hyperbolicity in settings where

Theorem 1.1 does not apply.

Remark 1.10 (Theorem 1.7 and the existence of an Albanese). Recall from [KR24a, Sect. 9]

that a C-pair has an Albanese with good universal properties if and only if its augmented

Albanese irregularity is finite. In this sense, Theorem 1.7 can be seen as saying that either

• an Albanese of C-pair (𝑋, 𝐷) exists and has rather small dimension, or

• (𝑋, 𝐷) has strong hyperbolicity properties.

At its core, our proof of Theorem 1.7 re-interprets parabolic Nevanlinna theory as a

“Nevanlinna theory for C-pairs”. We hope that the reader might find this of independent

interest.

1.3. Perspective: Specialness and C-entire curves. To put Theorem 1.7 into perspect-

ive, we recall a famous conjecture of Campana that relates specialness to the existence of

dense entire C-curves.

Conjecture 1.11 (Specialness and C-entire curves, [Cam11, Conj. 13.17]). Let (𝑋, 𝐷) be a

snc C-pair where𝑋 is projective or compact Kähler. Then, the pair (𝑋, 𝐷) is special if and

only if it admits a Zariski-dense entire C-curve.

Remark 1.12. Even if one is only interested in the statement for varieties (that is, the

case where 𝐷 = 0), the use of the word “special” implicitly turns Conjecture 1.11 into

a statement about C-pairs. Any result towards Conjecture 1.11 will necessarily need to

take C-pairs into account.

If (𝑋, 𝐷) is a special Kähler C-pair, we have seen in [KR24a, Rem. 7.4] that the aug-

mented irregularity is bounded by the dimension, 𝑞+
Alb

(𝑋, 𝐷) ≤ dim𝑋 . In particular, Con-

jecture 1.11 predicts that C-pairs with 𝑞+
Alb

(𝑋, 𝐷) > dim𝑋 have no Zariski dense entire

curves. This is exactly the content of Theorem 1.7. In cases where 𝑋 is smooth and 𝐷 is

empty or where𝐷 is reduced, this is exactly the logarithmic analogue of the Bloch-Ochiai

Theorem 1.1. We refer the reader to [NW14, Thm. 4.8.17] for details and for a discussion.

1.4. Acknowledgements. We would like to thank Oliver Bräunling, Lukas Braun,

Michel Brion, Johan Commelin, Andreas Demleitner, and Wolfgang Soergel for long dis-

cussions. Pedro Núñez pointed us to several mistakes in early versions of the paper. Jörg

Winkelmann patiently answered our questions throughout the work on this project.

The proof of Theorem 1.7 follows ideas of Kawamata, builds on work of Ueno and uses

Nevanlinna theory, as developed by Noguchi and others.

1.5. Global conventions. This paper works in the category of complex analytic spaces

and follows the notation of the standard reference texts [GR84, Dem12, NW14]. An ana-
lytic variety is a reduced, irreducible complex space. For clarity, we refer to holomorphic

maps between analytic varieties as morphisms and reserve the word map for meromorphic

mappings.

We use the language of C-pairs, as surveyed in [KR24b], and freely refer to defini-

tions and results from [KR24b] throughout the present text. The same holds for the paper

[KR24a], which introduces the core notion of a C-semitoric pair and constructs the Al-

banese of a C-pair. The reader might wish to keep hardcopies of both papers within reach.

2. Cyclic group actions on semitoric varieties and differentials

We will later need several elementary statements about actions of finite, cyclic groups

on semitoric varieties. While certainly known to experts, we were not able to find a

suitable reference and include a full proof below. We refer the reader to [NW14, Def. 5.3.3]

for the definition of “semitoric varieties”, and to [KR24a, Sect. 3] for a detailed discussion.
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Setting and Notation 2.1. Let 𝐴◦ ⊂ 𝐴 be a positive-dimensional semitoric variety, and let

𝐺 ⊂ Aut(𝐴,Δ𝐴) be a non-trivial, finite, cyclic group. Then, 𝐺 acts on the space of log-

arithmic differentials and decomposes this space into a direct sum of eigenspaces. More

precisely, there exists an identification 𝐺 = Z/(ord𝐺) and a unique decomposition

(2.1.1) 𝐻 0
(
𝐴, Ω1

𝐴 (logΔ𝐴)
)
=

⊕
0≤𝜆<ord𝐺

𝐸𝐺,𝜆,

where 𝐺 acts on every summand 𝐸𝐺,𝜆 by homotheties of the form

(2.1.2) Z
/
(ord𝐺) × 𝐸𝐺,𝜆 → 𝐸𝐺,𝜆,

(
[ℓ], 𝜏

)
↦→ exp

(
ℓ · 𝜆 · 2𝜋

ord𝐺
·
√
−1

)
· 𝜏 .

Fix the identification throughout. Recalling from [KR24a, Prop. 3.15] that the sheaf

Ω1

𝐴
(logΔ𝐴) is free, the decomposition (2.1.1) induces a decomposition of sheaves,

(2.1.3) Ω1

𝐴 (logΔ𝐴) =
⊕

E𝐺,𝜆 and T𝐴 (− logΔ𝐴) =
⊕

E ∗
𝐺,𝜆
.

Remark 2.2. The summands E ∗
𝐺,• of Setting 2.1 are free. They can equivalently be described

as

E ∗
𝐺,𝜆

=
⋂
𝜇≠𝜆

⋂
𝜏∈𝐸𝐺,𝜇

ker𝜏 .

Remark 2.3. The summands E ∗
𝐺,• of Setting 2.1 are invariant under the action of𝐴◦

. Since

𝐴◦
is commutative as a Lie group, its Lie bracket vanishes and the restriction of every

summand to 𝐴◦
is a foliation.

If the cyclic group𝐺 of Setting 2.1 acts on 𝐴 by translations with elements of 𝐴◦
, then

the induced action on the space of differentials is trivial and 𝐻 0
(
𝐴, Ω1

𝐴
(logΔ𝐴)

)
= 𝐸𝐺,0.

Since this is hardly interesting, we concentrate on the case where 𝐺 has a fixed point

and more relevant statements can be made. The following result is certainly not the best

possible, but suffices for our purposes.

Lemma 2.4. Assume Setting 2.1. If the 𝐺-action on 𝐴◦ has a fixed point, then the leaves of
E ∗
𝐺,0

|𝐴◦ are contained in the translates of proper, quasi-algebraic sub-semitori of 𝐴◦.

Proof. Fix an element 0𝐴◦ ∈ 𝐴◦
in order to equip 𝐴◦

with the structure of a Lie group.

Using that the foliation E ∗
𝐺,0

|𝐴◦ is translation-invariant, it suffices to show that the leaf

through 0𝐴◦ is contained in a proper, quasi-algebraic sub-semitorus of 𝐴◦
. To this end,

choose one 𝐺-fixed point 𝑎 ∈ 𝐴◦
, choose a generator ℎ ∈ 𝐺 and write

𝜂 := 𝐿−1

𝑎 ◦ ℎ ◦ 𝐿𝑎 ∈ Aut(𝐴,Δ𝐴),
where 𝐿𝑎 ∈ Aut(𝐴,Δ𝐴) is the translation that sends 0𝐴◦ to 𝑎. Observe that the element

𝜂 ∈ Aut(𝐴,Δ𝐴) fixes 0𝐴◦ . The elements ℎ and 𝜂 have the same order, and the associated

cyclic groups 𝐺 = ⟨ℎ⟩ and ⟨𝜂⟩ are thus canonically isomorphic. Since translations act

trivially on differentials, the actions of𝐺 and ⟨𝜂⟩ on 𝐻 0
(
𝐴, Ω1

𝐴
(logΔ𝐴)

)
agree under this

identification. To prove Lemma 2.4, we can therefore replace𝐺 by ⟨𝜂⟩ and assume without

loss of generality that𝐺 ⊂ Aut(𝐴,Δ𝐴) fixes the point 0𝐴◦ ∈ 𝐴 and therefore acts linearly

on the tangent space 𝑇𝐴◦ |{0𝐴◦ } . We know what the action is: The Decomposition (2.1.3)

induces a decomposition

𝑇𝐴◦ |{0𝐴◦ } =
⊕

𝑇𝐺,𝜆,

and 𝐺 acts on every summand by homotheties of the form

Z
/
(ord𝐺) ×𝑇𝐺,𝜆 → 𝑇𝐺,𝜆,

(
[ℓ], ®𝑣

)
↦→ exp

(
−ℓ · 𝜆 · 2𝜋

ord𝐺
·
√
−1

)
· ®𝑣 .

In particular, 𝐺 acts trivially on the summand 𝑇𝐺,0.

The exponential morphism exp : 𝑇𝐴◦ |{0𝐴◦ } → 𝐴◦
of the Lie group 𝐴◦

is a surjective,

locally biholomorphic group morphism that is equivariant for the actions of𝐺 on𝑇𝐴◦ |{0𝐴◦ }
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and on 𝐴◦
, respectively. The image exp(𝑇𝐺,0) equals the leaf of E ∗

𝐺,0
through 0. But the

equivariant exponential morphism sends𝐺-fixed points to𝐺-fixed points. Recalling from

[KR24a, Prop. 3.18] that ℎ |𝐴◦ ∈ Aut(𝐴◦) is a group morphism, this means that the leaf of

E ∗
𝐺,0

through 0𝐴◦ is then necessarily contained in

Fix(𝐺) ∩𝐴◦ = ker

(
ℎ |𝐴◦ − Id𝐴◦

)
⊆ 𝐴◦.

Recall from [KR24a, Facts 3.23 and 3.27] that this is indeed a quasi-algebraic, proper sub-

semitorus of 𝐴◦
. □

3. Nevanlinna theory for branched covers of C

To prepare for the proof of Theorem 1.7, this section recalls a number of useful results

from Nevanlinna theory. We refer the reader to [Yam15, Sect. 3 and p. 250f] and [NW14,

Sect. 2.7] for details and for a well-written introduction to Nevanlinna theory for branched

covers ofC. To begin, we fix setting and notation for the remainder of the present section.

Setting 3.1 (Holomorphic cover of the complex plane). Let 𝑉 be a connected Riemann

surface and 𝜌 : 𝑉 ↠ C be a cover (recall the convention [KR24b, Def. 2.21] that covers are

finite). We denote the standard coordinate function on the complex line by 𝑡 ∈ 𝐻 0
(
C, OC

)
.

Given any real number 𝑟 ≥ 0, let Δ𝑟 ⊂ C be the disk of radius 𝑟 and write 𝑉𝑟 := 𝜌−1 (Δ𝑟 )
for its preimage.

3.1. The Nevanlinna functions. Maintain Setting 3.1. Aiming to generalize Bloch-

Ochiai’s Theorem 1.1, we are interested in a criterion to guarantee that holomorphic

morphisms from𝑉 to a projective manifold 𝑌 are algebraically degenerate. The criterion,

Theorem 4.1 on page 9, builds on work of Noguchi and makes heavy use the “main Nevan-

linna functions for the branched covering 𝜌”. We recall the definitions of the Nevanlinna

functions and briefly state their main properties and refer to [NW14, Sect. 2.7] for a more

detailed introduction.

Reminder 3.2 (Counting functions). In Setting 3.1, let𝐻 ∈ Div(𝑉 ) be any effective divisor.

We can then consider the following functions.

𝑁𝐻 : [1,∞) → R≥0, 𝑟 ↦→ 1

deg 𝜌

∫ 𝑟

1

( ∑
𝑢∈𝑉𝑠

ord𝑢 𝐻

)
𝑑𝑠

𝑠
Counting

𝑁1,𝐻 : [1,∞) → R≥0, 𝑟 ↦→ 1

deg 𝜌

∫ 𝑟

1

( ∑
𝑢∈𝑉𝑠

min{1, ord𝑢 𝐻 }
)
𝑑𝑠

𝑠
Truncated counting

Reminder 3.3 (Proximity and height functions). In Setting 3.1, let 𝑔 : 𝑉 → 𝑌 be any non-

constant morphism from 𝑉 to a projective manifold 𝑌 , equipped with a Hermitian line

bundle 𝐿 :=
(
L , | · |

)
and a section 𝜎 ∈ 𝐻 0

(
𝑌,L

)
such that 𝜎 ◦ 𝑔 is not identically zero.

Writing 𝑐1 (𝐿) for the Chern form of the Hermitian bundle 𝐿, we consider the following

functions,

𝑚(•, 𝑔, 𝐿, 𝜎) : [1,∞) → R, 𝑟 ↦→ 1

deg 𝜌

∫
𝜕𝑉𝑟

log

1

|𝜎 ◦ 𝑔 | · 𝜌
∗ (𝑑𝑐 log |𝑡 |2) Proximity

𝑇 (•, 𝑔, 𝐿) : [1,∞) → R, 𝑟 ↦→ 1

deg 𝜌

∫ 𝑟

1

(∫
𝑉𝑠

𝑔∗𝑐1 (𝐿)
)
𝑑𝑠

𝑠
Height

Remark 3.4 (Integral in the proximity function). The existence of the integral in the defin-

ition of𝑚(•, 𝑔, 𝐿, 𝜎) is elementary, cf. [NW14, (2.3.30) and Sect. 2.7]. For the reader’s con-

venience, we remark that our main reference, [NW14], writes 𝛾 := 𝑑𝑐 log |𝑡 |2. Our second

main reference, [Nog85], uses the notation 𝜂 := 𝜌∗ (𝑑𝑐 log |𝑡 |2). We will constantly use the

fact that

(3.4.1)

∫
𝜕Δ𝑟

𝑑𝑐 log |𝑡 |2 = 1 and hence

∫
𝜕𝑉𝑟

𝜌∗ (𝑑𝑐 log |𝑡 |2) = deg 𝜌.
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The following elementary facts are well-known to experts, cf. [Yam15, p. 234 and 250].

We include full proofs for the reader’s convenience.

Lemma 3.5 (Boundedness of the proximity function). The function 𝑚(•, 𝑔, 𝐿, 𝜎) of Re-
minder 3.3 is bounded from below.

Proof. This follows from Equation (3.4.1), given that the continuous function 𝑌 → R≥0
,

𝑦 → |𝜎 (𝑦) | on the compact space 𝑌 is bounded from above. □

Lemma 3.6 (Independence on choice of metric). If the bundle L of Reminder 3.3 carries
two Hermitian metrics, 𝐿1 :=

(
L , | · |1

)
and 𝐿2 :=

(
L , | · |2

)
, then

𝑚(•, 𝑔, 𝐿1, 𝜎) =𝑚(•, 𝑔, 𝐿2, 𝜎) +𝑂 (1)(3.6.1)

𝑇 (•, 𝑔, 𝐿1) = 𝑇 (•, 𝑔, 𝐿2) +𝑂 (1).(3.6.2)

Proof. Equation (3.6.1) follows from (3.4.1), given that the two norm functions | · |1 and

| · |2 ∈ C0 (L ) differ only by multiplication with the pull-back of a strictly positive function

in C0 (𝑉 ), which attains its minimum and maximum.

The proof of (3.6.2) is almost identical to [Yam15, proof of Lem. 3.1]. To begin, observe

that 𝑐1 (𝐿1) and 𝑐1 (𝐿2) are smooth closed (1, 1)-forms on 𝑌 with identical cohomology

class. The difference 𝑐1 (𝐿1) − 𝑐1 (𝐿2) is thus exact, and the 𝜕𝜕-lemma yields a smooth

function 𝜑 on 𝑉 such that 𝑐1 (𝐿1) − 𝑐1 (𝐿2) = 𝑑𝑑𝑐𝜑 . We find

𝑇 (𝑟, 𝑔, 𝐿1) −𝑇 (𝑟, 𝑔, 𝐿2)

=
1

deg 𝜌

∫ 𝑟

1

(∫
𝑉𝑠

𝑔∗
(
𝑐1 (𝐿1) − 𝑐1 (𝐿2)

) ) 𝑑𝑠
𝑠

=
1

deg 𝜌

∫ 𝑟

1

(∫
𝑉𝑠

𝑑𝑑𝑐 (𝜑 ◦ 𝑔)
)
𝑑𝑠

𝑠

=
1

deg 𝜌

∫ 𝑟

1

(∫
𝜕𝑉𝑠

𝑑𝑐 (𝜑 ◦ 𝑔)
)
𝑑𝑠

𝑠
Stokes

=
1

deg 𝜌

∫
𝑉𝑟 \𝑉1

𝑑𝑐 (𝜑 ◦ 𝑔) ∧ 𝑑 |𝑡 ◦ 𝜌 |
|𝑡 ◦ 𝜌 | Fubini

=
1

2 · deg 𝜌

∫
𝑉𝑟 \𝑉1

𝑑𝑐 (𝜑 ◦ 𝑔) ∧ 𝜌∗ (𝑑 log |𝑡 |2)

=
−1

2 · deg 𝜌

∫
𝑉𝑟 \𝑉1

𝑑 (𝜑 ◦ 𝑔) ∧ 𝜌∗ (𝑑𝑐 log |𝑡 |2) 𝑑𝑐𝑢 ∧ 𝑑𝑣 = 𝑑𝑐𝑣 ∧ 𝑑𝑢

=
−1

2 · deg 𝜌

∫
𝑉𝑟 \𝑉1

𝑑

(
(𝜑 ◦ 𝑔) · 𝜌∗ (𝑑𝑐 log |𝑡 |2)

)
𝑑𝑑𝑐 log |𝑡 |2 = 0

=
−1

2 · deg 𝜌

(∫
𝜕𝑉𝑟

(𝜑 ◦ 𝑔) · 𝜌∗ (𝑑𝑐 log |𝑡 |2)

−
∫
𝜕𝑉1

(𝜑 ◦ 𝑔) · 𝜌∗ (𝑑𝑐 log |𝑡 |2)
)

Stokes.

Since 𝜑 is bounded as a continuous function on the compact manifold 𝑌 , Equation (3.4.1)

implies that the integrals in the last line are bounded. □

Lemma 3.7 (Height function for ample divisor). If the bundle L of Reminder 3.3 is ample,
then the height function tends to infinity. More precisely, there exist 𝑐+

1
∈ R+ and 𝑐2 ∈ R

such that

𝑇 (𝑟, 𝑔, 𝐿) ≥ 𝑐+
1
· log 𝑟 + 𝑐2, for every 𝑟 ≥ 1.
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Proof. Ampleness of L and Lemma 3.6 allows replacing | · | with a metric of positive

Chern form. The proof of [Yam15, p. 234] will then apply verbatim:

𝑇 (𝑟, 𝑔, 𝐿) = 1

deg 𝜌

∫ 𝑟

1

(∫
𝑉𝑠

𝑔∗𝑐1 (𝐿)
)
𝑑𝑠

𝑠
≥ 1

deg 𝜌

∫ 𝑟

1

(∫
𝑉1

𝑔∗𝑐1 (𝐿)
)
𝑑𝑠

𝑠
= const

+ · log 𝑟 □

We also recall that the Nevanlinna functions of Reminders 3.2 and 3.3 are related to

one another by the following fundamental result.

Theorem 3.8 (First main theorem, cf. [NW14, Thm. 2.7.4]). In the setting of Reminder 3.3,
let 𝐷 ∈ Div(𝑌 ) be the zero-divisor of the section 𝜎 . Then,

𝑇 (•, 𝑔, 𝐿) = 𝑁𝑔∗𝐷 (•) +𝑚(•, 𝑔, 𝐿, 𝜎) +𝑂 (1). □

3.2. The Lemma on logarithmic derivatives. The next section develops a degeneracy

criterion, Theorem 4.1, whose proof uses a fundamental fact of Nevanlinna theory for

branched covers of C: the “Lemma on logarithmic derivatives”. For the reader’s conveni-

ence, we briefly recall the statement. The following notation will be used to compare

differentials on 𝑉 with the standard differential d 𝑡 on the complex plane.

Notation 3.9 (Differentials on𝑉 and the standard differential on the complex line). In Set-

ting 3.1, observe that every meromorphic differential 𝜏 ∈ 𝐻 0
(
𝑉 , Ω1

𝑉
⊗K𝑉

)
can be written

as 𝜉 · (𝜌∗𝑑𝑡), where 𝜉 ∈ 𝐻 0
(
𝑉 ,K𝑉

)
is meromorphic. Writing 𝜉 =:

𝜏
𝜌∗𝑑𝑡 for ease of nota-

tion, we can thus define a morphism that takes meromorphic differentials to meromorphic

functions,

𝜂 : 𝐻 0
(
𝑉 , Ω1

𝑉 ⊗ K𝑉

)
→ 𝐻 0

(
𝑉 ,K𝑉

)
, 𝜏 ↦→ 𝜏

𝜌∗𝑑𝑡
.

The Lemma on logarithmic derivatives views the meromorphic functions 𝜉 as morph-

isms 𝜉 : 𝑉 → P1
and considers the proximity function with respect to the standard

Hermitian structure on the hyperplane bundle of P1
. The following notation will be used.

Notation 3.10 (Hermitian structure on the anti-tautological bundle). Denote the standard

Hermitian structure on the hyperplane bundle of P1
by 𝐻 := (OP1 (1), | · |). Writing 𝑧

for the standard coordinate on C ⊂ P1
, we also consider the standard sections 𝜎0, 𝜎∞ ∈

𝐻 0
(
P1, OP1 (1)

)
, where div𝜎• = •, where 𝜎0 = 𝑧 · 𝜎∞ and

(3.10.1) |𝜎0 (𝑧) |2 =
|𝑧 |2

|𝑧 |2 + 1

and |𝜎∞ (𝑧) |2 = 1

|𝑧 |2 + 1

.

Theorem 3.11 (Lemma on logarithmic derivatives, [Nog85, Lem. 1.6]). In the setting of
Reminder 3.3, assume that L is ample. Given a reduced divisor 𝐷 ∈ Div(𝑌 ) with img𝑔 ⊄

supp𝐷 and a logarithmic differential 𝜔 ∈ 𝐻 0
(
𝑌, Ω1

𝑌
(log𝐷)

)
, consider the meromorphic

function 𝜉 := 𝜂
(
𝑔∗𝜔

)
, and view it as a morphism 𝜉 : 𝑉 → P1. If 𝜀 > 0 is any number, there

exists an inequality of the following form,

(3.11.1) 𝑚(•, 𝜉, 𝐻, 𝜎∞) ≤ 𝜀 ·𝑇 (•, 𝑔, 𝐿) ∥.

Reminder 3.12 (Notation used in (3.11.1)). As usual in Nevanlinna theory, the symbol

∥ in (3.11.1) means that the inequality holds outside a subset of [1,∞) that is a union of

(possibly infinitely many) intervals with finite total measure. The subset may well depend

on the number 𝜀.

Proof of Theorem 3.11. Theorem 3.11 is a reformulation of [Nog85, Lem. 1.6]. To begin,

observe that it follows from Lemma 3.7 that the validity of Inequality (3.11.1) depends only

on the classes of the functions𝑚(•, 𝜉, 𝐻, 𝜎∞) and 𝑇 (•, 𝑔, 𝐿), modulo addition of bounded

functions. We use this freedom in two ways.

• Using Lemma 3.6, we may replace the Hermitian metric on the ample bundle L
and assume without loss of generality that 𝑐1 (𝐿) is a positive form on 𝑉 . This will
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later become relevant when we invoke [Nog85, Lem. 1.6], where positivity of 𝑐1 (𝐿)
is an implicit assumption

2
.

• We may replace the proximity function 𝑚(•, 𝜉, 𝐻, 𝜎∞) in (3.11.1) with the simpler

variant𝑚(•, 𝜉) used in Noguchi’s paper.

We explain the second bullet item in detail and consider the estimates

𝑚(𝑟, 𝜉, 𝐻, 𝜎∞) =
1

deg 𝜌

∫
𝜕𝑉𝑟

log

1

|𝜎∞ ◦ 𝜉 | · 𝜌
∗ (𝑑𝑐 log |𝑡 |2) definition(3.13.1)

=
1

deg 𝜌

∫
𝜕𝑉𝑟

log

√︁
|𝜉 |2 + 1 · 𝜌∗ (𝑑𝑐 log |𝑡 |2) (3.10.1)(3.13.2)

=
1

deg 𝜌

∫
𝜕𝑉𝑟

log
+ |𝜉 | · 𝜌∗ (𝑑𝑐 log |𝑡 |2)︸                                       ︷︷                                       ︸

=:𝑚 (𝑟,𝜉 ) , as defined in [Nog85, p. 298]

+𝑂 (1), see below(3.13.3)

where

log
+

: R→ R≥0, 𝑟 ↦→
{

0 if 𝑟 < 1

log 𝑟 otherwise.

The estimate (3.13.3) follows from (3.4.1) and from the elementary inequality

0 ≤ log

√
𝑟 2 + 1 − log

+ 𝑟 ≤ log

√
2, for every 𝑟 ∈ R≥0.

Wrapping up what we have shown so far: To prove Theorem 3.11, it suffices to show that

for every 𝜀 > 0, there exists an inequality of the form

(3.13.4) 𝑚(•, 𝜉) ≤ 𝜀 ·𝑇 (•, 𝑔, 𝐿) ∥.
choose 𝛿 ∈ (0, 1) such that 𝛿 ≤ 𝜀 · 𝑐+

1
and recall from [Nog85, Lem. 1.6 and Given one 𝜀,

consider the constants 𝑐+
1

and 𝑐2 of Lemma 3.7, proof on p. 302] that there exists a constant

𝑐 ∈ R and an inequality of the form

(3.13.5) 𝑚(•, 𝜉) ≤ 𝛿 · log • + 20 · log
+𝑇 (•, 𝑔, 𝐿) + 𝑐 ∥.

But given that 𝑇 (•, 𝑔, 𝐿) is monotonous and unbounded, the following will hold for all

sufficiently large numbers 𝑟 ≫ 0,

0 ≤ 20 · log
+𝑇 (𝑟, 𝑔, 𝐿) ≤ 𝜀

3

·𝑇 (𝑟, 𝑔, 𝐿),(3.13.6)

𝑐 − 𝛿 · 𝑐2

𝑐+
1

≤ 𝜀

3

·𝑇 (𝑟, 𝑔, 𝐿).(3.13.7)

For these numbers sufficiently large numbers 𝑟 , the right side of (3.13.5) then reads

𝛿 · log 𝑟 + 20 · log
+𝑇 (𝑟, 𝑔, 𝐿) + 𝑐

=
𝛿

𝑐+
1

(𝑐+
1
· log 𝑟 ) + 20 · log

+𝑇 (𝑟, 𝑔, 𝐿) + 𝑐

≤ 𝛿

𝑐+
1

·𝑇 (𝑟, 𝑔, 𝐿) + 20 · log
+𝑇 (𝑟, 𝑔, 𝐿) + 𝑐 − 𝛿 · 𝑐2

𝑐+
1

Lem. 3.7

≤ 𝜀

3

·𝑇 (𝑟, 𝑔, 𝐿) + 20 · log
+𝑇 (𝑟, 𝑔, 𝐿) + 𝑐 − 𝛿 · 𝑐2

𝑐+
1

choice of 𝛿 and (3.13.6)

≤ 𝜀 ·𝑇 (𝑟, 𝑔, 𝐿) (3.13.6) and (3.13.7).

This establishes an inequality of the desired form (3.13.4) and finishes the proof of Theo-

rem 3.11. □

2
The sentence “we assume that Ω is the positive form associated with a Hermitian metricℎ on𝑋 ” in [Nog85,

p. 299] contains a misprint. The symbol “𝑋 ” should read “𝑉 ”.
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4. A degeneracy criterion for entire curves

Building on work of Noguchi, this section establishes a criterion to guarantee algebraic

degeneracy of the morphism 𝑔 from Reminder 3.3.

Theorem 4.1 (Degeneracy criterion). In the setting of Reminder 3.3, let 𝐷 ∈ Div(𝑌 ) be a
reduced divisor with snc support, such that the following holds.

(4.1.1) The Albanese morphism alb(𝑌, 𝐷)◦ of the log pair is generically finite.
(4.1.2) The image of alb(𝑌, 𝐷)◦ is a variety of log-general type.
(4.1.3) The image of 𝑔 does not intersect 𝐷 .

Suppose that there exists a reduced divisor3 𝐷1 ∈ Div(𝑌 ) with img𝑔 ⊄ supp𝐷1 and logar-
ithmic differentials 𝜔1, . . . , 𝜔𝑙 ∈ 𝐻 0

(
𝑌, Ω1

𝑌
(log𝐷1)

)
such that the associated meromorphic

functions 𝜉𝑖 := 𝜂
(
𝑔∗𝜔𝑖

)
are holomorphic and do not vanish identically. If

(4.1.4) supp

(
Ramification 𝜌

)
⊆

⋃
𝑖∈{1,...,𝑙 }

{𝑣 ∈ 𝑉 : 𝜉𝑖 (𝑣) = 0},

then 𝑔 is algebraically degenerate.

Explanation 4.2. Condition (4.1.2) might require a word of explanation. To formulate the

condition precisely, choose one Albanese and consider the map

alb(𝑌, 𝐷)◦ : 𝑌 ◦ → Alb(𝑌, 𝐷)◦ ⊂ Alb(𝑌, 𝐷).

Consider the toplogical closure𝑊 := img alb(𝑌, 𝐷)◦. Observe that𝑊 is analytic because

alb(𝑌, 𝐷)◦ is quasi-algebraic, and write𝑊 ◦
:=𝑊 ∩ Alb(𝑌, 𝐷)◦. We obtain a tuple (𝑊,Δ)

where𝑊 is a (potentially non-normal) variety andΔ =𝑊 \𝑊 ◦
is an analytic subset of pure

codimension one. Condition (4.1.2) says that one (equivalently: every) log-resolution of

(𝑊,Δ) is of log-general type. Since Alb(𝑌, 𝐷) is unique up to bimeromorphic equivalence,

this condition does not depend on the choice made in the construction.

We prove Theorem 4.1 in Section 4.2 below.

4.1. Noguchi’s criterion. The proof of Theorem 4.1 relies on the following proposition.

Essentially due to Noguchi, it replaces Condition (4.1.4) by an inequality between Nevan-

linna functions. The interested reader might also want to look at a related criterion of

Yamanoi, [Yam10, Prop. 3.3], that is stronger but works only in the compact case.

Proposition 4.3 (Noguchi’s criterion). In the setting of Reminder 3.3, let 𝐷 ∈ Div(𝑌 ) be a
reduced divisor with snc support, such that the following holds.

(4.3.1) The Albanese morphism alb(𝑌, 𝐷)◦ of the log pair (𝑌, 𝐷) is generically finite.
(4.3.2) The image of alb(𝑌, 𝐷)◦ is a variety of log-general type.
(4.3.3) The image of 𝑔 does not intersect 𝐷 .

If the line bundle L ∈ Pic(𝑌 ) is ample and if the inequality

(4.3.4) 𝑁Ramification 𝜌 (•) ≤ 𝜀 ·𝑇 (•, 𝑔, 𝐿) ∥
holds for every 𝜀 > 0, then 𝑔 is algebraically degenerate.

Proof. We argue by contradiction and assume that the image of 𝑔 is Zariski dense in 𝑌 .

By [Nog85, Thm. 3.2 on p. 306], there will then exist constants 𝑐+
1
, 𝑐+

2
, 𝑐+

3
∈ R+ and 𝑐4 ∈ R

such that an inequality of the form

(4.4.1) 𝑐+
1
·𝑇 (•, 𝑔, 𝐿) ≤ 𝑁Ramification 𝜌 (•) + 𝑐+2 · 𝜀 · log • + 𝑐+

3
· log

+𝑇 (•, 𝑔, 𝐿) + 𝑐4 ∥
holds for every number 𝜀 ∈ (0, 1). Choose 𝜀 small enough so that

(1 + 𝑐+
2
+ 𝑐+

3
) · 𝜀 < 𝑐+

1

3
Note: We do not assume that 𝐷1 has snc support.
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and use the assumption that L is ample to observe

𝑐+
1
·𝑇 (•, 𝑔, 𝐿) ≤ 𝑁Ramification 𝜌 (•) + 𝑐+2 · 𝜀 · log • + 𝑐+

3
· log

+𝑇 (•, 𝑔, 𝐿) + 𝑐4 ∥ (4.4.1)

≤ 𝜀 ·𝑇 (•, 𝑔, 𝐿) + 𝑐+
2
· 𝜀 · log • + 𝑐+

3
· log

+𝑇 (•, 𝑔, 𝐿) + 𝑐4 ∥ (4.3.4)

≤ 𝜀 ·𝑇 (•, 𝑔, 𝐿) + 𝑐+
2
· 𝜀 ·𝑇 (•, 𝑔, 𝐿) + 𝑐+

3
· log

+𝑇 (•, 𝑔, 𝐿) + 𝑐4 ∥ Lem. 3.7

≤ 𝜀 ·𝑇 (•, 𝑔, 𝐿) + 𝑐+
2
· 𝜀 ·𝑇 (•, 𝑔, 𝐿) + 𝑐+

3
· 𝜀 ·𝑇 (•, 𝑔, 𝐿) + 𝑐4 ∥ Lem. 3.7

= (1 + 𝑐+
2
+ 𝑐+

3
) · 𝜀 ·𝑇 (•, 𝑔, 𝐿).

Given that 𝑇 (•, 𝑔, 𝐿) is monotonous and unbounded, this is absurd. □

4.2. Proof of Theorem 4.1. Since none of our assumptions refers to 𝐿, we may assume

without loss of generality that L is ample. Following [Yam10, proof of Prop. 3.1], we aim

to apply Theorem 3.11 (“Lemma on logarithmic derivatives”). To this end, consider the

standard Hermitian bundle 𝐻 of Notation 3.10.

Using Assumption (4.1.4), the counting function for the ramification of 𝜌 is estimated

as follows,

𝑁Ramification 𝜌 (•) ≤ (deg 𝜌) · 𝑁1,Ramification 𝜌 (•) ∀𝑣 ∈ 𝑉 : ord𝑣 Ram. 𝜌 ≤ deg 𝜌

≤ (deg 𝜌) ·
𝑙∑︁

𝑖=1

𝑁𝜉∗
𝑖
{0} (•) Ass. (4.1.4)

Given any 𝜀′ > 0, we can give an estimate for each summand,

𝑁𝜉∗
𝑖
{0} (•) = 𝑇 (•, 𝜉𝑖 , 𝐻 ) −𝑚(•, 𝜉𝑖 , 𝐻, 𝜎0) +𝑂 (1) Thm. 3.8 (“first main”)

≤ 𝑇 (•, 𝜉𝑖 , 𝐻 ) +𝑂 (1) Lem. 3.5

= 𝑁𝜉∗
𝑖
{∞} (•) +𝑚(•, 𝜉𝑖 , 𝐻, 𝜎∞) +𝑂 (1) Thm. 3.8 (“first main”)

=𝑚(•, 𝜉𝑖 , 𝐻, 𝜎∞) +𝑂 (1) since 𝜉𝑖 is holomorphic

≤ 𝜀′ ·𝑇 (•, 𝑔, 𝐿) +𝑂 (1) ∥ Thm. 3.11 (“log. derivatives”)

Lemma 3.7 will then imply that Inequality (4.3.4) of Noguchi’s criterion holds for all 𝜀 > 0.

The claim thus follows. □

5. C-version of the Bloch-Ochiai theorem, proof of Theorem 1.7

Theorem 1.7 is a direct consequence of the following, stronger Proposition 5.2. The

formulation of Proposition 5.2 use the “Albanese of a cover”, as introduced and discussed

in [KR24a, Sect. 5]. For the reader’s convenience, we recall the relevant notions in brief.

Reminder 5.1 (The Albanese of a cover, [KR24a, Def. 5.2 and Prop. 5.5]). Let (𝑋, 𝐷) be a

C-pair where 𝑋 is compact Kähler and let 𝛾 : 𝑋 ↠ 𝑋 be a cover. Consider the open sets

𝑋 ◦
:= 𝑋 \ supp⌊𝐷⌋ and 𝑋 ◦

:= 𝛾−1 (𝑋 ◦).

Then, there exists a semitoric variety Alb(𝑋, 𝐷,𝛾)◦ ⊂ Alb(𝑋, 𝐷,𝛾) and a quasi-algebraic
4

morphism

alb(𝑋, 𝐷,𝛾)◦ : 𝑋 ◦ → Alb(𝑋, 𝐷,𝛾)◦

such that the pull-back morphism for logarithmic reflexive differentials takes its image

in the subspace of adapted reflexive differentials. Moreover, if 𝐴◦ ⊂ 𝐴 is any semitoric

variety, if 𝑎◦ : 𝑋 ◦ → 𝐴◦
is any quasi-algebraic morphism whose associated pull-back

4
Quasi-algebraic = the holomorphic morphism alb(𝑋,𝐷,𝛾 )◦ extends to a meromorphic map between the

compact spaces 𝑋 and Alb(𝑋,𝐷,𝛾 )
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morphism for logarithmic reflexive differentials takes its image in the subspace of adapted

reflexive differentials, then 𝑎 factors uniquely as

𝑋 ◦
Alb(𝑋, 𝐷,𝛾)◦ 𝐴◦,

alb(𝑋,𝐷,𝛾 )◦

𝑎◦

∃!𝑏◦

where 𝑏◦ is quasi-algebraic.

Proposition 5.2 (Strong version of Theorem 1.7). Let (𝑋, 𝐷) be a C-pair where 𝑋 is com-
pact Kähler. If there exists a cover 𝛾 : 𝑋 ↠ 𝑋 such that alb(𝑋, 𝐷,𝛾)◦ is not dominant, then
every C-entire curve (C, 0) → (𝑋, 𝐷) is algebraically degenerate.

Remark 5.3 (Quasi-algebraicity and dominance). The morphism alb(𝑋, 𝐷,𝛾)◦ is quasi-

algebraic and its image is therefore constructible. The word “dominant” in Proposition 5.2

is therefore meaningful.

Remark 5.4 (Relation to Theorem 1.7). In the setting of Theorem 1.7, the assumption

𝑞+
Alb

(𝑋, 𝐷) > dim𝑋 guarantees the existence of a cover 𝛾 : 𝑋 ↠ 𝑋 such that

dim Alb(𝑋, 𝐷,𝛾) > dim𝑋 . In particular, alb(𝑋, 𝐷,𝛾)◦ is not dominant in this setting.

We will prove Proposition 5.2 in the remainder of the present section.

5.1. Proof of Proposition 5.2. We argue by contradiction and assume that there exists

one C-entire curve 𝜑 : (C, 0) → (𝑋, 𝐷) whose image is Zariski dense in 𝑋 . As before,

consider the open sets

𝑋 ◦
:= 𝑋 \ supp⌊𝐷⌋ and 𝑋 ◦

:= 𝛾−1 (𝑋 ◦).
The definition of C-morphism guarantees that 𝜑 takes its image in 𝑋 ◦ ⊆ 𝑋 .

Step 1: Galois closure and the Albanese. Functoriality of the Albanese, as spelled out

in [KR24a, Lem. 5.8], allows replacing the cover 𝛾 by its Galois closure. We will therefore

assume without loss of generality that 𝛾 is Galois, with group 𝐺 .

The proof of Proposition 5.2 discusses the Albanese of the cover 𝛾 . For brevity of

notation, we denote the associated semitoric variety by Alb
◦ ⊂ Alb and write alb

◦
:

𝑋 ◦ → Alb
◦

for the associated morphism. Recall from [KR24a, Obs. 5.9] that𝐺 acts on Alb
◦

by quasi-algebraic automorphisms, in a way that makes the morphism alb
◦

equivariant.

Finally, choose an element 𝑥 ∈ 𝑋 ◦
and use its image point

0
Alb

◦ := alb
◦ (𝑥) ∈ Alb

◦

to equip Alb
◦

with the structure of a Lie group.

Step 2: Reminder. The assumption that alb
◦

is not dominant allows using constructions

and results of our earlier paper [KR24a]. For the reader’s convenience, we recall the main

points.

Construction of a semitoric quotient variety. In [KR24a, Const. 7-10], we construct a non-

trivial semitoric variety 𝐵◦ ⊆ 𝐵 with 𝐺-action, a point 0𝐵◦ ∈ 𝐵◦ that equips 𝐵◦ with the

structure of a Lie group, and a diagram

(5.5.1)

𝑋 ◦
Alb

◦ 𝐵◦

𝑋 ◦ Alb
◦/
𝐺 𝐵◦

/
𝐺

alb
◦

𝛾◦
, quotient by 𝐺

𝑏◦

𝛽◦ , group quotient

𝛾
Alb

◦ , quotient by 𝐺 𝛾𝐵◦ , quotient by 𝐺

𝛿◦ 𝜀◦

where (among other things) the following holds.
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(5.5.2) All horizontal arrows are quasi-algebraic,

(5.5.3) all arrows in the top row are 𝐺-equivariant, and

(5.5.4) all arrows in the bottom row are C-morphisms for the C-pairs

(𝑋 ◦, 𝐷◦),
(
Alb

◦, 0
) /
𝐺, and

(
𝐵◦, 0

) /
𝐺.

The image of 𝛽◦. Consider the topological closure𝑍 := img 𝛽◦, which is an analytic subset

of𝐵 because 𝛽◦ is quasi-algebraic. We write𝑍 ◦
:= 𝑍∩𝐵◦ and set 𝑝 := dim𝑍 . The following

has been shown in [KR24a, Obs. 7.12].

(5.5.5) The variety 𝑍 ◦
is positive-dimensional.

(5.5.6) The variety 𝑍 ◦
is a proper subset 𝑍 ◦ ⊊ 𝐵◦.

Differentials on 𝐵◦. Finally, [KR24a, Obs. 7.11] employs methods from Kawamata’s proof

of the Bloch conjecture, in order to find 𝐵◦-invariant differentials 𝜏◦
0
, . . . , 𝜏◦𝑝 ∈ 𝐻 0

(
𝐵◦, Ω

𝑝

𝐵◦
)

with the following properties.

(5.5.7) The restrictions 𝜏◦• |𝑍 ◦
reg

are linearly independent top-differentials on 𝑍 ◦
reg

, and

therefore define a (𝑝 + 1)-dimensional linear system 𝐿 ⊆ 𝐻 0
(
𝑍 ◦

reg
, 𝜔𝑍 ◦

reg

)
.

(5.5.8) The associated meromorphic map 𝜑𝐿 : 𝑍 ◦
reg
d P𝑝 is generically finite.

Step 3: Setup. Let𝑉 be the normalized fibre product C ×𝑋 ◦ 𝑋 ◦
, which may be reducible

or irreducible. The construction of 𝑉 extends Diagram (5.5.1) as follows,

𝑉 𝑋 ◦
Alb

◦ 𝐵◦

C 𝑋 ◦ Alb
◦/
𝐺 𝐵◦

/
𝐺.

𝛾𝑉 , quotient

𝜑 , dense img.

𝑓 :=𝛽◦◦alb
◦ ◦𝜑

alb
◦

𝛾
𝑋 ◦ , quotient

𝛽◦

𝛾
Alb

◦ , quotient 𝛾𝐵◦ , quotient

𝜑 , dense img.

𝑓 :=𝜀◦◦𝛿◦◦𝜑

𝛿◦ 𝜀◦

We highlight two elementary facts that will later become relevant.

Claim 5.6. The morphism 𝑓 is a C-morphism from (C, 0) to the quotient pair

(
𝐵◦, 0

) /
𝐺 .

Proof of Claim 5.6. This follows from [KR24b, Prop. 11.1], given that the quotient pair(
𝐵◦, 0

)
/𝐺 is uniformizable. □ (Claim 5.6)

Claim 5.7. The natural𝐺-action on𝑉 is effective. More precisely: if 𝑔 ∈ 𝐺 is any element,

then the fixed point set of the associated translation 𝑉 → 𝑉 is finite.

Proof of Claim 5.7. If𝑔 ∈ 𝐺 is any hypothetical element whose translation morphism fixes

an entire component 𝑉 ′ ⊂ 𝑉 , then equivariance of 𝜑 implies that the image set 𝜑 (𝑉 ′) is

𝑔-fixed. But that image set is dense in 𝑋 ◦
. □ (Claim 5.7)

Step 4: Resolution of singularities. Consider the semitoric variety 𝐵◦ ⊂ 𝐵 and choose

a log-resolution 𝜋 : 𝑌 → 𝑍 of (𝑍,Δ𝐵 ∩ 𝑍 ). Write Δ𝑌 for the reduced snc divisor on 𝑌

whose support equals 𝜋−1 (Δ𝐵). As before, write 𝑌 ◦
:= 𝑌 \ Δ𝑌 . The following diagram
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summarizes the setup,

𝑌

𝑉 𝑍 𝐵

C 𝑍
/
𝐺 𝐵

/
𝐺.

𝜋 , resolution

𝑓

𝛾𝑉 , quotient

𝜑

quotient

𝜄, inclusion

quotient

𝑓

Remark 5.8. If 𝑉 ′ ⊂ 𝑉 is any component, then it is clear by construction that 𝑓 (𝑉 ′)
is Zariski-dense in 𝑍 . The morphism 𝜑 is the canonical lifting of 𝑓 to the resolution of

singularities. This lifting exists because the images 𝑓 (𝑉 ′) are Zariski-dense and hence not

contained in the indeterminacy locus of 𝜋−1
.

Claim 5.9. The log pair (𝑌,Δ𝑌 ) is of log-general type.

Proof of Claim 5.9. Recall from [KR24a, Prop. 3.15] that the 𝐵◦-invariant differentials 𝜏◦• ∈
𝐻 0

(
𝐵◦, Ω

𝑝

𝐵◦
)

extend to logarithmic differentials 𝜏• ∈ 𝐻 0
(
𝐵, Ω

𝑝

𝐵
(logΔ)

)
. Pulling those

back, we obtain sections in 𝜔𝑌 (logΔ𝑌 ) such that the meromorphic map of the associated

linear subsystem of |𝐾𝑌 + Δ𝑌 | is generically finite. □ (Claim 5.9)

Remark 5.10. Claim 5.9 implies that the manifold 𝑌 is Moishezon. In particular, there

exists a blow-up 𝑌 → 𝑌 where 𝑌 is projective, [Pet94, Cor. 6.10]. Replacing 𝑌 by its

blow-up, we may assume without loss of generality that the manifold 𝑌 is projective.

Claim 5.11. The Albanese morphism alb(𝑌,Δ𝑌 )◦ of the log pair (𝑌,Δ𝑌 ) is generically

injective. The dimension of the Albanese satisfies dim Alb(𝑌,Δ𝑌 )◦ > dim𝑌 .

Proof of Claim 5.11. Given that 𝑌 ◦
admits a generically injective, quasi-algebraic morph-

ism into 𝐵◦, generic injectivity of alb(𝑌,Δ𝑌 )◦ follows directly from the universal property,

as spelled out in [KR24a, Def. 4.2]. For the inequality between the dimension, recall from

(5.5.6) that 𝑍 ◦
is a proper subset of 𝐵◦. But [KR24a, Proposition 4.10] implies that 𝑍 ◦

generates 𝐵◦ as a group, so that the natural morphism Alb(𝑌,Δ𝑌 )◦ → 𝐵◦ is necessarily

surjective. □ (Claim 5.11)

Claim 5.12. The 𝐺-action on 𝐵◦ is not free. In particular, there exists a non-trivial, cyclic

subgroup 𝐻 ⊂ 𝐺 that acts on 𝐵◦ with a fixed point.

Proof of Claim 5.12. Claim 5.11 allows applying the Logarithmic Bloch-Ochiai Theorem

[NW14, Thm. 4.8.17] to the manifold 𝑌 and the divisor Δ𝑌 : entire curves C → 𝑌 ◦
can-

not have Zariski dense images. Together with Remark 5.8 this implies in particular that

no component of 𝑉 is isomorphic to C. The quotient morphism 𝛾𝑉 must therefore be

branched, and there do exist group elements 𝑔 ∈ 𝐺 that fix certain points of 𝑉 . Equivari-

ance of 𝑓 will then imply that 𝑔 fixes their images in 𝐵◦. □ (Claim 5.12)

Step 5: Cyclic subgroups of𝐺 and differentials on 𝐵. In the situation at hand, where

𝑍 ◦
is not contained in the translate of any quasi-algebraic subgroup of 𝐵◦, the results of

Section 2 can be interpreted as an existence statement for differentials with certain factors

of automorphy.

Claim 5.13. If 𝐻 ⊆ 𝐺 is cyclic and if its action on 𝐵◦ has a fixed point, then there exists a

logarithmic differential 𝜏𝐻 ∈ 𝐻 0
(
𝐵, Ω1

𝐵
(logΔ𝐵)

)
such that the following holds.

(5.13.1) The pull-back differential 𝜎𝐻 := (d 𝑓 )𝜏𝐻 does not vanish identically on any com-

ponent of 𝑉 .
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(5.13.2) If ℎ ∈ 𝐻 \ {𝑒𝐻 } is any element with associated translation 𝑡ℎ : 𝑉 → 𝑉 , then there

exists a number 𝜁 ∈ C∗ \ {1} such that (d 𝑡ℎ)𝜎𝐻 = 𝜁 · 𝜎𝐻 .

Proof of Claim 5.13. We use the notation introduced in Setting 2.1 on page 4. By assump-

tion, the variety 𝑍 is not contained in any proper sub-semitorus of Alb
◦
, and then neither

are the sets 𝑓 (𝑉 ′), where 𝑉 ′ ⊂ 𝑉 is any component. According to Lemma 2.4 on page 4,

this implies that none of the restricted morphisms 𝑓 |𝑉 ′ has its image tangent to the fo-

liation E ∗
𝐻,0

. It follows that there exists a number 𝜆 > 0 and a form 𝜏 ∈ 𝐸𝐻,𝜆 such that

(d 𝑓 |𝑉 ′ )𝜏 ≠ 0, for every component 𝑉 ′ ⊂ 𝑉 . But then, Remark 2.2 immediately im-

plies that there exists a number 𝜆 > 0 and a form 𝜏𝐻 ∈ 𝐸𝐻,𝜆 such that (5.13.1) holds.

Property (5.13.2) is now an immediate consequence of the description of the 𝐻 -action on

differentials, as given in (2.1.2). □ (Claim 5.13)

Notation and Choice 5.14. Let Γ ⊂ P (𝐺) be the set of non-trivial, cyclic subgroups of

𝐺 whose action on 𝐵◦ has at least one fixed point; Claim 5.12 guarantees that this set

is not empty. For each of the finitely many 𝐻 ∈ Γ, choose one differential form 𝜏𝐻 ∈
𝐻 0

(
𝐵, Ω1

𝐵
(logΔ𝐵)

)
that satisfies the conclusion of Claim 5.13 and write

𝜔𝐻 := 𝜋∗𝜏𝐻 ∈ 𝐻 0
(
𝑌, Ω1

𝑌 (logΔ𝑌 )
)

𝜎𝐻 := 𝑔∗𝜔𝐻 ∈ 𝐻 0
(
𝑉 , Ω1

𝑉

)
.

Following Notation 3.9, we denote the associated meromorphic functions of 𝑉 as

𝜉𝐻 := 𝜂 (𝜎𝐻 ) ∈ 𝐻 0
(
𝑉 , K𝑉

)
.

Maintain this choice for the remainder of the present proof.

Step 6: End of proof. In order to derive a contradiction and to finish the proof of Propos-

ition 5.2, we show that the degeneracy criterion of Theorem 4.1 on page 9 applies to the

morphism𝜑 and to the finite collection of differentials, {𝜔𝐻 : 𝐻 ∈ Γ}. Claims 5.9 and 5.11

together with the following two assertions ensure that the assumptions of Theorem 4.1

are indeed satisfied.

Claim 5.15. For every subgroup 𝐻 ∈ Γ, the meromorphic function 𝜉𝐻 is holomorphic.

Proof of Claim 5.15. Let 𝐻 ∈ Γ be any group. To see that 𝜉𝐻 is holomorphic, recall from

Claim 5.6 that 𝑓 is a C-morphism between (C, 0) and (𝐵◦, 0)/𝐺 . It will then follow directly

from the definition of a “C-morphism” in [KR24b, Def. 8.1] that the differential form 𝜎𝐻 ∈
𝐻 0

(
𝑉 , Ω1

𝑉

)
is a section of the sheaf Ω1

(C,0,𝜌 ) = 𝜌
∗Ω1

C
. □ (Claim 5.15)

Claim 5.16. For every point 𝑣 ∈ Ramification 𝜌 , there exists one subgroup 𝐻 ∈ Γ such

that 𝜉𝐻 vanishes at 𝑣 .

Proof of Claim 5.16. Given any point 𝑣 ∈ Ramification𝛾𝑉 , observe that its isotropy group

𝐻 is non-trivial. Claim 5.7 and the classic statement about “linearization at a fixed point”,

[HO84, Sect. 1.5], implies that the natural representation morphism

𝐺𝑣 → Gl(𝑇𝑉 |𝑣) � Gl(1, C) � C∗

is injective. In particular, 𝐻 is isomorphic to a subgroup of C∗ and hence cyclic. The fact

that 𝑓 is equivariant implies that 𝑓 (𝑣) is an𝐻 -fixed point of 𝐵◦. In summary, we find that

𝐻 ∈ Γ. Choose a generator ℎ ∈ 𝐻 and recall that there exists a number 𝜁 ∈ C∗ \ {1} such

that (d 𝑡ℎ)𝜎𝐻 = 𝜁 · 𝜎𝐻 . Since 𝜌∗𝑑𝑡 is 𝐺-invariant, this implies

𝜉𝐻 ◦ 𝑡ℎ = 𝜁 · 𝜉𝐻 .
In particular, the function 𝜉𝐻 must necessarily vanish at the 𝐻 -fixed point 𝑣 ∈ 𝑉 . The

claim thus follows. □ (Claim 5.16)

Theorem 4.1 now asserts that the morphism 𝜑 is algebraically degenerate, and then so

are 𝑓𝑊 and 𝑓 . This contradicts our assumption and ends the proof of Proposition 5.2. □
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