
THE ALBANESE OF A C-PAIR

STEFAN KEBEKUS AND ERWAN ROUSSEAU

Abstract. Wri�en with a view towards applications in hyperbolicity, rational points,

and entire curves, this paper addresses the problem of constructing Albanese maps within

Campana’s theory of C-pairs (or “geometric orbifolds”). It introduces C-semitoric pairs

as analogues of the (semi)tori used in the classic Albanese theory and follows Serre by

de�ning the Albanese of a C-pair as the universal map to a C-semitoric pairs. �e pa-

per shows that the Albanese exists in relevant cases, gives sharp existence criteria, and

conjectures that a “weak Albanese” exists unconditionally.
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1. Introduction

�is paper constructs Albanese maps for C-pairs, with the goal to provide tools for

the study rational points and entire curves in algebraic varieties and complex manifolds.

To illustrate our motivation, consider the following two classic theorems of Faltings and

Bloch-Ochiai/Kawamata.
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�eorem 1.1 (Faltings’ theorem on density of rational points, [Fal91]). Let- be a project-
ive manifold de�ned over a number �eld : . If the dimension of its Albanese variety satis�es
dim Alb(- ) > dim- , then its rational points are not potentially dense. In other words: If
: ⊆ : ′ is any �nite �eld extension, then : ′-rational points are not Zariski dense in - . �

�eorem 1.2 (Bloch-Ochiai’s theorem on entire curves, [Kaw80, �m. 2]). Let - be a
complex projective manifold such that its Albanese variety satis�es dim Alb(- ) > dim- ,
then entire curves on - are not Zariski dense. �

Aiming to generalize these results, Campana has formulated a series of far-reaching

conjecture that generalize Lang’s conjectures and relate potential density of rational

points and existence of entire curves to the notion of “specialness” of his theory of C-

pairs.

Conjecture 1.3 (Specialness and density of rational points, [Cam11, Conj. 13.21]). Let -

be a projective manifold de�ned over a number �eld : . �en, - is special if and only if

its rational points are potentially dense.

Conjecture 1.4 (Specialness and C-entire curves, [Cam11, Conj. 13.17]). Let - be a com-

plex projective manifold. �en, - is special if and only if - admits a Zariski dense entire

curve.

Given that the Albanese appears prominently in �eorems 1.1 and 1.2, we expect that

an “Albanese for C-pairs” might play an important role in future progress towards Con-

jectures 1.3 and 1.4. Section 1.1.4 on page 3 announces �rst results in this direction.

1.1. Main results. �e Albanese of a projective manifold - is characterized by univer-

sal properties that can be formulated in a number of ways, relating to the geometry or

topology of - . Our presentation follows Serre’s classic paper [Ser59]
1
, where the Al-

banese of a projective manifold- is an Abelian variety Alb(- ) together with a morphism

alb : - → Alb(- ) such that any other morphism from- to an Abelian variety factors via

alb. More generally, we recall in Section 4 that the Albanese of a logarithmic pair (-, �)
is a semitoric variety�◦ ⊂ �, together with a quasi-algebraic morphism alb : - \� → �◦

such that any other quasi-algebraic morphism from - \ � to a semitoric variety factors

via alb.

1.1.1. C-semitoric pairs. For C-pairs (-, �), we argue that the natural analogues of com-

pact tori and semitoric varieties are “C-semitoric pairs”, that is, quotients of tori and

semitoric varieties, with their natural structure as a quotient C-pair. Section 8 introduces

C-semitoric pairs and discusses their main properties. �e following non-trivial result

suggests that C-semitoric pairs are a geometrically meaningful concept.

�eorem 1.5 (Precise statement in �eorem 8.4). �asi-algebraic C-morphisms between
C-semitoric pairs come from group morphisms. �

Following Serre, we de�ne the Albanese of a C-pair (-, �) as a universal, quasi-

algebraic C-morphism from (-, �) to a C-semitoric pair.

1.1.2. �e Albanese irregularity. Given a C-pair (-, �), it turns out that the existence of

an Albanese is tied to an invariant of independent interest, the “Albanese irregularity”

@+
Alb
(-, �) ∈ N ∪ {∞}.

�e Albanese irregularity is bounded from above by the augmented irregularity @+ (-, �),
introduced in [KR24a, Sect. 6.1], which measures the dimension of the space of adapted

di�erentials on suitable high covers. �e Albanese irregularity di�ers from the augmen-

ted irregularity in that it considers only those adapted di�erentials that are induced by

1
See also the presentation in [Wit08, Appendix A].
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morphisms to semitoric varieties. Part II of this paper de�nes and discusses the Albanese

irregularity and the associated “Albanese of a cover” in great details. As one of our major

results, we will prove near the end of this paper that special pairs have bounded Albanese

irregularity.

�eorem 1.6 (Precise statement in Corollary 7.2 and Remark 7.4). If (-, �) is special in
the sense of Campana, then @+

Alb
(-, �) ≤ dim- . �

In spite of the notion’s obvious importance, we do not fully understand the geometric

meaning of the (potentially strict) inequality @+ (-, �) ≤ @+
Alb
(-, �). Section 10.2 gathers

a number of open questions.

1.1.3. �e Albanese of a C-pair. With all preparations in place, the main result of our

paper is now formulated as follows.

�eorem 1.7 (Precise statement in �eorem 9.2 and Proposition 9.5). Let (-, �) be a nc
C-pair, where- is a compact Kähler manifold. �en, the following statements are equivalent.

(1.7.1) An Albanese of the C-pair (-, �) exists.
(1.7.2) �e Albanese irregularity is �nite, @+

Alb
(-, �) < ∞. �

We speculate that if @+
Alb
(-, �) = ∞, it might still make sense to de�ne an Albanese,

either with a weaker universal property, or in the broader setup of ind-varieties. We refer

to Section 10.1 for a discussion.

1.1.4. Preview: Pairs with high irregularity. In the forthcoming paper [KR24b], we develop

the beginnings of a Nevanlinna theory for C-pairs, with the goal to study hyperbolicity

properties of pairs with high irregularity. A �rst application generalizes the classic Bloch-

Ochiai �eorem 1.2 to the se�ing of C-pairs: If @+
Alb
(-, �) > dim- , then every C-entire

curve (C, 0) → (-, �) is algebraically degenerate. �is theorem explicitly includes the

case where @+
Alb
(-, �) = ∞. It establishes Conjecture 1.4 for some non-special varieties.

1.2. Acknowledgements. We would like to thank Oliver Bräunling, Lukas Braun,

Michel Brion, Johan Commelin, Andreas Demleitner, Constantin Podelski and Wolfgang

Soergel for long discussions. Pedro Núñez pointed us to several mistakes in early versions

of the paper. Jörg Winkelmann patiently answered our questions throughout the work

on this project.

�e work on this paper was completed while Stefan Kebekus visited Zsolt Patakfalvi

at the EPFL and Erwan Rousseau at the Université de Bretagne Occidentale. He would

like to thank Patakfalvi and Rousseau for hospitality and for many discussions.

Part I. Preparation

2. Notation and standard facts

2.1. Global conventions. �is paper works in the category of complex analytic spaces,

though all the material in this paper will work in the complex-algebraic se�ing, o�en with

less involved de�nitions and proofs. With very few exceptions, we follow the notation

of the standard reference texts [GR84, Dem12, NW14]. An analytic variety is a reduced,

irreducible complex space. For clarity, we refer to holomorphic maps between analytic

varieties as morphisms and reserve the word map for meromorphic mappings.

We use the language of C-pairs, as surveyed in [KR24a], and freely refer to de�nitions

and results from [KR24a] throughout the present text. �e reader might wish to keep a

hardcopy within reach.
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2.2. �asi-algebraic morphisms. Let- and. be normal analytic varieties. In contrast

to the algebraic se�ing, it is generally not possible to extend a morphism between Zariski

open subsets to a meromorphic map between - and . : the exponential map does not

extend to a meromorphic map P1 d P1
. Morphisms that do extend meromorphically will

be of special interest. Following [NW14], we refer to them as quasi-algebraic.

De�nition 2.1 (�asi-algebraic morphism). Let (-, �- ) and (., �. ) be pairs where -
and. are compact. A morphism between the open parts,- ◦ → . ◦, is called quasi-algebraic

with respect to the compacti�cations - and . if it extends to a meromorphic map - d . .

Notation 2.2 (�asi-algebraic morphisms to C and C∗). Recall that C and C∗ admit a

unique normal compacti�cation to P1
. If (-, �- ) is a pair where - is compact, it is there-

fore meaningful to say that a morphism - ◦ → C or - ◦ → C∗ is quasi-algebraic. Analog-

ously, it makes sense to say that a function in O- (- ◦) or in O∗
-
(- ◦) is quasi-algebraic.

De�nition 2.3 (Family of quasi-algebraic morphisms). In the se�ing of De�nition 2.1,
let / be any normal analytic variety. A family of quasi-algebraic morphisms over / is a
morphism - ◦ × / → . ◦ that extends to a meromorphic map - × / d . .

For lack of an adequate reference, we include proofs of the following elementary facts.

Lemma 2.4 (Elementary properties). Let (-, �- ), (., �. ) and (/, �/ ) be pairs, where - ,
. and / are compact. Assume that a sequence of morphism is given,

- ◦ . ◦ / ◦,
U◦

W◦

V◦

where U◦ is quasi-algebraic. �en, the following holds.
(2.4.1) If V◦ is quasi-algebraic, then W◦ is quasi-algebraic.
(2.4.2) If U◦ is dominant and W◦ is quasi-algebraic, then V◦ is quasi-algebraic.

Proof. Only (2.4.2) will be shown. Replacing - and . by suitable bimeromorphic models,

we may assume that there exists a commutative diagram as follows,

- . /

- ◦ . ◦ / ◦.

U , surjective

W

∃? V

W◦

U◦ , dominant V◦

�e image Γ ⊂ . ×/ of the product morphism U ×W : - → . ×/ is analytic by the proper

mapping theorem. Commutativity of the diagram guarantees that Γ is bimeromorphic to

. , and hence the graph of the desired meromorphic map V : . d / . �

�asi-algebraic morphisms to C∗ enjoy the following strong rigidity property.

Lemma 2.5 (Families of quasi-algebraic morphisms to C∗). Let (-, �- ) be a pair where
- is compact, let / be any normal analytic variety and let i◦ : - ◦ ×/ → C∗ be a family of
quasi-algebraic morphisms over / . �en, there exist functions 5 ◦ ∈ O∗

-
(- ◦) and 6 ∈ O∗

/
(/ )

such that the equality i◦ (G, I) = 5 ◦ (G) · 6(I) holds for every (G, I) ∈ - ◦ × / .

Proof. Extend i◦ to a meromorphic map i : - × / → P1
and view i as a meromorphic

function. Choosing a point I0 ∈ / , we would like to compare i to the meromorphic

function � (G, I) := i (G, I0). For that, consider the associated principal divisors, divi and

div � in Div(- ×/ ). Both divisors are supported on (- \- ◦) ×/ and are hence of product

form. �eir restrictions to - × {I0} agree. It follows that the two divisors are equal, so

that� := i/� is a holomorphic function on - ×/ without zeros or poles. �e function�
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is constant on the (compact!) �bres of the projection map- ×/ → / and hence descends

to a function 6 ∈ O∗
/
(/ ) on the normal space / . To conclude, set 5 ◦ (G) := i◦ (G, I0). �

3. Semitoric varieties, qasi-algebraic morphisms and groups

�e Albanese of a compact Kähler manifold is a compact complex torus. We will re-

call in Section 4 that the Albanese of a logarithmic pair is a more complicated object: a

semitorus together with a preferred bimeromorphic equivalence class of a compacti�ca-

tion. For the reader’s convenience, we recall the relevant notions and prove a number of

elementary statements that are not readily found in the literature.

We follow conventions and the language of the textbook [NW14] and refer the reader

to [NW14, Sect. 4 and 5] for details, proofs and references to the original literature.

De�nition 3.1 (Semitorus, presentation, [NW14, Def. 5.1.5 and Sect. 5.1.5]). A semitorus

is a connected commutative complex Lie group�◦ that admits a surjective Lie group morph-
ism c◦ : �◦ � ) , where ) is a compact complex torus and kerc◦ � (C∗)×•. Lie group
morphisms of this form are called presentations of the semitorus �◦.

Remark 3.2. Semitori also appear under the name quasi-tori in the literature, [Kob98,

p. 119]. Presentations are not unique. A given semitorus might allow two di�erent

presentations whose associated compact complex tori are hugely di�erent.

3.1. Semitoric varieties. Semitoric varieties are the analytic analogues of Abelian vari-

eties, complex tori and toric varieties. �e following de�nition is taken almost verbatim

from [NW14].

De�nition 3.3 (Semitoric variety, [NW14, Def. 5.3.3]). A semitoric variety is a compact
analytic variety � together with a holomorphic action ℵ◦ 	 � of a semitorus ℵ◦ such that
the following holds.

(3.3.1) �ere is a dense open orbit �◦ ⊂ � on which ℵ◦ acts freely.
(3.3.2) �ere exists a presentation c◦ : ℵ◦ � ) with the following properties.

• Using (3.3.1) to identify �◦ with ℵ◦, the morphism c◦ extends to an ℵ◦-
equivariant morphism c : � � ) .
• For every point C ∈ ) the �bre �C = c−1 (C) is isomorphic to a smooth toric

variety. In other words,�C admits the structure of a smooth algebraic variety
such that the action of kerc◦ on �C is algebraic.

Explanation 3.4 (First item of (3.3.2)). Extendability of c◦ in the �rst item of (3.3.2) is

independent of the identi�cation. �e extension is unique if it exists.

Explanation 3.5 (Second item of (3.3.2)). Spelled out in detail, the second item of (3.3.2)

requires that �C admits the structure of a smooth algebraic variety such that the action

of kerc◦ on �C is algebraic. Item (3.3.2) immediately implies that � is smooth and � \�◦
is an snc divisor.

Warning 3.6. An identi�cation of �◦ with a Lie group is not part of the data that de�nes

a semitoric variety.

Notation 3.7 (Semitoric varieties). For brevity of notation, we will frequently write “Let

�◦ be a semitorus, and let �◦ ⊂ � be a semitoric compacti�cation. . . ” to say that � is a

compacti�cation where the action on �◦ on itself by le� multiplication extends to � in a

way that makes � with the action �◦ 	 � a semitoric variety.

Notation 3.8 (Semitoric varieties). For brevity of notation, we will frequently write “Let

�◦ ⊂ � be a semitoric variety. . . ” to say that we consider a compact analytic variety �

and a dense open subset �◦ ⊂ � where �◦ is biholomorphic to a semitorus ℵ◦ that acts

holomorphically on � such that
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• the subset �◦ ⊂ � is an orbit on which ℵ◦ acts freely, and

• the analytic variety � together with the action of ℵ◦ is a semitoric variety in the

sense of De�nition 3.3.

Notation 3.9 (Semitoric varieties as logarithmic pairs). Given a semitoric variety �◦ ⊂ �,

we will o�en consider the associated logarithmic pair (�,Δ) and write Ω
?

�
(logΔ), with

the implicit understanding that Δ := � \�◦ is the di�erence divisor. If there is more than

one semitoric variety involved in the discussion, we write (�,Δ�) for clarity.

Notation 3.10 (�asi-algebraic morphisms). Given two semitoric varieties, �◦ ⊂ � and

�◦ ⊂ �, we follow De�nition 2.1 and say that a morphism �◦ → �◦ is quasi-algebraic if

it extends to a meromorphic map � d �. Along similar lines, if (-, �) is any pair where

- is compact, it makes sense to say that morphisms between the open parts, �◦ → - ◦

and - ◦ → �◦, are quasi-algebraic.

3.2. Elementary properties. For later reference, we state several facts about quasi-

algebraic morphisms between semitoric varieties. �e proofs are tedious but mostly ele-

mentary, and le� to the reader. In fancy words, Facts 3.11–3.13 can be seen to give an

equivalence of categories between presentations of semitori and bimeromorphic equival-

ence classes of semitoric compacti�cations.

Fact 3.11 (Uniqueness of presentation). �e presentation of ℵ◦ in De�nition 3.3 is unique.
More precisely, there exists a unique presentation c◦ : ℵ◦ = �◦ � ) that extends to an
ℵ◦-equivariant �bre bundle c : � � ) . �

Fact 3.12 (Existence for given presentation, [NW14, �m. 5.1.35]). Let �◦ be a semitorus
and let c◦ : �◦ � ) be a presentation. If � is any smooth toric variety compactifying
� ◦ := (c◦)−1 (0) ), then there exists a semitoric variety �◦ ⊂ � with associated morphism
c : �→ ) where c−1 (0) ) is isomorphic to � as an � ◦-space. �

A group morphism between the open parts of semitoric varieties is quasi-algebraic if

and only if it respects the associated presentations. In particular, we �nd that the bimero-

morphic equivalence class of a semitoric compacti�cation is uniquely determined by the

presentation.

Fact 3.13 (�asi-algebraic group morphisms and presentations). Let �◦ and �◦ be
semitori, and let�◦ ⊂ � and �◦ ⊂ � be semitoric compacti�cations, with associated morph-
isms c� : � � )� and c� : � � )� . If f◦ : �◦ → �◦ is any holomorphic group morphism,
then the following two statements are equivalent.
(3.13.1) �e morphism f◦ is quasi-algebraic.
(3.13.2) �ere exists a holomorphic group morphism g : )� → )� , where g◦c� = c�◦f◦. �

Proof of the implication (3.13.1)⇒ (3.13.2). Lemma 2.4 guarantees that the composed map

c◦
�
◦ f◦ is quasi-algebraic. Since the compact complex torus � does not contain rational

curves, we �nd that the quasi-algebraic morphism c◦
�
◦ f◦ factors via the (C∗)×•-�bre

bundle c◦
�

. We obtain a morphism 5) : )� → )� and a commutative diagram as follows,

(3.13.3)

�◦ �◦

)� )� .

c◦
�

f◦

c◦
�

g

�e morphism g maps 0)� to 0)� and is hence a group morphism, [NW14, Def. 5.1.36]. �

If the equivalent conditions of Fact 3.13 hold, there is a li�le more that we can say:

f◦ extends to a morphism between � and � if and only its restriction to the central �bre

extends to a morphism.
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Fact 3.14 (Morphisms and bimeromorphic maps). In the se�ing of Fact 3.13, assume that
f◦ is quasi-algebraic, with associated meromorphic map f : � d �. �en, the following two
statements are equivalent.

(3.14.1) �e meromorphic map f is a morphism.
(3.14.2) �e meromorphic map f |c−1

�
(0)� )

: c−1

�
(0)� ) d c−1

�
(0)� ) is a morphism. �

On semitoric varieties, a di�erential form is logarithmic if and only if it is invariant.

Proposition 3.15 (Invariant di�erentials and logarithmic di�erentials). In the se�ing of
De�nition 3.3, the following statements hold for every number ? ∈ N.

(3.15.1) �e locally free sheaf Ω?
�
(logΔ) is free.

(3.15.2) Every �◦-invariant di�erential form g◦ ∈ � 0
(
�◦, Ω

?

�◦
)

extends to a logarithmic
form g ∈ � 0

(
�, Ω

?

�
(logΔ)

)
.

(3.15.3) Every logarithmic form in � 0
(
�, Ω

?

�
(logΔ)

)
is �◦-invariant.

Proof. Item (3.15.1) is [NW14, Cor. 5.4.5]. For Item (3.15.2), observe that every �◦-
invariant di�erential form g◦ ∈ � 0

(
�◦, Ω

?

�◦
)

can be wri�en as a sum of wedge products

of 1-di�erentials. To prove Item (3.15.2), it will therefore su�ce to consider the case ? = 1.

�e group �◦ acts on itself by le� multiplication. By assumption, this actions extends to

an action of �◦ on � that stabilizes Δ. �e �◦-invariant vector �elds on �◦ that are in-

duced by this action will therefore extend to sections of T� (− logΔ). Using (3.15.1), the

case ? = 1 of Item (3.15.2) now follows by taking duals.

Item (3.15.3) follows from (3.15.1) and (3.15.2), given that the dimensions of the spaces

� 0
(
�◦, Ω

?

�◦
)�◦

and � 0
(
�,Ω

?

�
(logΔ)

)
agree. �

Remark 3.16 (Pull-back of logarithmic di�erentials I). Given a semitoric variety �◦ ⊂ �
and a nc log pair (-, �), we are o�en interested in quasi-algebraic morphisms 0◦ : - ◦ →
�◦. Given that - and � are smooth and that 0 is holomorphic away from a small subset

of - , there exists a pull-back morphism for logarithmic di�erentials

d0 : � 0
(
�,Ω1

� (logΔ)
)
→ � 0

(
-, Ω1

- (log�)
)

that restricts on - ◦ to the standard pull-back d0◦.

Remark 3.17 (Pull-back of logarithmic di�erentials II). Generalizing Remark 3.16, given a

semitoric variety�◦ ⊂ �, a log pair (-, �) that is not necessarily nc, and a quasi-algebraic

morphism 0◦ : - ◦ → �◦, there exists a pull-back morphism for logarithmic di�erentials

d0 : � 0
(
�,Ω1

� (logΔ)
)
→ � 0

(
-, Ω [1]

-
(log�)

)
that restricts on - ◦

reg
to the standard pull-back d0◦.

3.3. �asi-algebraic morphisms. In contrast to the algebraic se�ing, a morphism

between semitori need not be a group morphism, even if it respects the neutral elements

of the group structure. For an example, consider the morphism C∗ → C∗, C ↦→ exp(C − 1).
�e situation improves for quasi-algebraic morphisms of semitoric varieties.

Proposition 3.18 (�asi-algebraic morphisms and group morphisms). Let �◦ and �◦ be
semitori, and let �◦ ⊂ � and �◦ ⊂ � be semitoric compacti�cations. Let 5 ◦ : �◦ → �◦ be
any quasi-algebraic morphism of analytic varieties. If 5 ◦ (0�◦ ) = 0�◦ , then 5 ◦ is a morphism
of complex Lie groups.

Proof. In order to prepare for the proof, consider the associated presentations c◦
�

: �◦ �
)� and c◦

�
: �◦ � )� . Fact 3.13 equips us with a group morphism 5) : )� → )� forming a
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commutative diagram as follows,

(3.18.1)

�◦ �◦

)� )� .

c◦
�

5 ◦

c◦
�

5)

We would like to show that 5 ◦ is a group morphism. For this, consider the auxiliary

morphism

b◦ : �◦ ×�◦ → �◦, (G,~) ↦→ 5 ◦ (G) + 5 ◦ (~) − 5 ◦ (G + ~).
To conclude, we need to show that b◦ ≡ 0�◦ or equivalently that b◦ is constant. �e

assumption that 5 ◦ is quasi-algebraic and [NW14, Prop. 5.3.5] together guarantee that b◦

extends to a meromorphic map b : �×� d � and is hence quasi-algebraic. �e following

property follows from the assumption that 5 ◦ (0�◦ ) = 0�◦ .

(3.18.2) ∀0 ∈ �◦ : b◦ (0, 0�◦ ) = b◦ (0�◦ , 0) = 0�◦

�ere is more that we can say. If (G,~) ∈ �◦ ×�◦ is any pair of points, then

(c◦� ◦ b◦) (G,~) = c◦� (5 ◦ (G) + 5 ◦ (~) − 5 ◦ (G + ~)
)

de�nition

= (c◦� ◦ 5 ◦) (G) + (c◦� ◦ 5 ◦) (~) − (c◦� ◦ 5 ◦) (G + ~) c◦� a grp. morph.

= (5) ◦ c◦�) (G) + (5) ◦ c◦�) (~) − (5) ◦ c◦�) (G + ~) Diagram (3.18.1)

= 0)� 5) ◦ c◦� a grp. morph.

In summary, we �nd that b◦ takes its image in (c◦
�
)−1 (0)� ). Fixing one identi�cation

(c◦
�
)−1 (0)� ) � (C∗)×•, Lemma 2.5 allows writing b◦ in product form. More precisely,

there exist functions 0•, 1• ∈ O∗
�
(�◦) such that

b◦ (G,~) =
(
01 (G) · 11 (~), . . . , 0= (G) · 1= (~)

)
, for every (G,~) ∈ �◦ ×�◦.

Equation (3.18.2) will then imply that b◦ is constant. �

Corollary 3.19 (�asi-algebraic morphisms between open parts of semitoric varieties).
Let �◦ ⊂ � and �◦ ⊂ � be semitoric varieties and let 5 ◦ : �◦ → �◦ be a quasi-algebraic
morphism of analytic varieties. �en, the following holds.
(3.19.1) �e �bres of 5 ◦ are of pure dimension.
(3.19.2) Any two non-empty �bres of 5 ◦ are of the same dimension.
(3.19.3) If 5 ◦ is quasi-�nite, then it is �nite.
(3.19.4) If 5 ◦ is �nite and surjective, then it is étale. �

Corollary 3.20 (�asi-algebraic automorphisms). Let �◦ ⊂ � be a semitoric variety.
Once we choose an element 0�◦ ∈ �◦ to equip �◦ with the structure of a holomorphic Lie
group, the group of quasi-algebraic automorphisms of the analytic variety �◦ decomposes
as a semidirect product (translations) o (group morphisms). �

Corollary 3.21 (Semitoric compacti�cation with additional symmetry). Let�◦ ⊂ �1 be a
semitoric variety, and let � ⊂ Aut(�◦) be a �nite group of quasi-algebraic automorphisms.
�en, there exists a semitoric variety �◦ ⊂ �2, such that the following holds.
• �e analytic varieties �1 and �2 are bimeromorphic.
• �e �-action on �◦ extends equivariantly to �2.

Proof. As before, write c◦ : �◦ � ) for the unique presentation that extends to an

�◦-equivariant morphism c : �1 � ) . Corollary 3.20 allows assuming without loss of

generality that� is a �nite group of quasi-algebraic group morphisms. Fact 3.13 will then

guarantee that � acts by group morphisms on ) in a way that makes the morphism c◦

equivariant. In particular, the �-action �xes the point 0) and stabilizes the �bre � ◦ :=
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(c◦)−1 (0) ) � (C∗)×•. Toric geometry will then allow choosing
2

a �-equivariant toric

compacti�cation � ◦ ⊂ � , and Fact 3.12 presents us with a semitoric compacti�cation�◦ ⊂
�2, �bred over) with typical �bre � . Fact 3.13 ensures that�1 and�2 are bimeromorphic,

and Fact 3.14 asserts that the �-action on �◦ extends equivariantly to �2. �

3.4. �asi-algebraic subgroups. In analogy to the notion of a quasi-algebraic morph-

ism, a quasi-algebraic subgroup of a semitorus is a subgroup that extends to an analytic

set in a preferred compacti�cation. A full discussion of this notion is found in [NW14,

Sect. 5.3.4].

De�nition 3.22 (�asi-algebraic subgroup, [NW14, Def. 5.3.14]). Let �◦ be a semitorus,
and let �◦ ⊂ � be a semitoric compacti�cation. An analytic subgroup � ◦ ⊂ �◦ is called
quasi-algebraic for the semitoric compacti�cation �◦ ⊂ � if the topological closure of � ◦

in � is an analytic subset.

3.4.1. Elementary properties. We state two facts about quasi-algebraic subgroups for later

reference. �e elementary proofs are le� to the reader.

Fact 3.23 (�asi-algebraic subgroups are semitori, [NW14, Prop. 5.3.13]). In the se�ing
of De�nition 3.22, quasi-algebraic subgroups are again semitori. �

Warning 3.24 (Analytic subgroups need not be semitori). Despite claims to the contrary

in the literature, cf. [Kob98, Lem. 3.8.18], closed analytic subgroups of semitori need not

be semitori in general. See [NW14, Ex. 5.1.44] and the references there for an example.

�e following fact implies that the notion of “quasi-algebraic subgroup” depends only

on the bimeromorphic equivalence class of a semitoric compacti�cation.

Fact 3.25 (Dependence on choice of compacti�cation). Let �◦ be a semitorus, and let
�◦ ⊂ �1 and �◦ ⊂ �2 be two bimeromorphic semitoric compacti�cations. �en, a subgroup
� ◦ ⊂ �◦ is quasi-algebraic for the semitoric compacti�cation �◦ ⊂ �1 if and only if it is
quasi-algebraic for the semitoric compacti�cation �◦ ⊂ �2. �

3.4.2. La�ice structure. As usual in algebra, quasi-algebraic subgroups form a complete

la�ice. We refrain from going into any details here and state the only fact that will be

relevant for us later.

Fact 3.26 (Existence of a smallest group). In the se�ing of De�nition 3.22, the intersection
of arbitrarily many quasi-algebraic subgroups is quasi-algebraic. In particular, given any
subset � ⊂ �◦, there exists a unique smallest quasi-algebraic subgroup that contains � . �

3.4.3. �otients. Semitoric varieties are stable under quotients by quasi-algebraic groups,

in the following sense.

Fact 3.27 (Existence of a quotients, [NW14, �m. 5.3.13]). Let �◦ be a semitorus, and let
�◦ ⊂ � be a semitoric compacti�cation. If � ◦ ⊂ �◦ is a quasi-algebraic subgroup, then the
quotient &◦ := �◦/� ◦ is a semitorus and there exists a semitoric compacti�cation &◦ ⊂ &
that renders the quotient morphism @◦ : �◦ � &◦ quasi-algebraic. �

3.4.4. Examples. �roughout this paper, quasi-algebraic subgroups appear as kernels of

quasi-algebraic group morphisms and as �xed point sets of quasi-algebraic group action.

We recall the relevant facts.

Fact 3.28 (Kernels of quasi-algebraic group morphisms). Let�◦ and �◦ be a semitori, and
let �◦ ⊂ � and �◦ ⊂ � be semitoric compacti�cations. If U◦ : �◦ → �◦ is any quasi-
algebraic morphism of complex Lie groups, then ker(U◦) ⊂ �◦ is quasi-algebraic for the
semitoric compacti�cation �◦ ⊂ �. �

2
Since� is �nite, every fan can be re�ned to become stable under the action of� on #R.
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Proposition 3.29 (Fixed points of quasi-algebraic groups actions). Let�◦ be a semitorus,
and let �◦ ⊂ � be a semitoric compacti�cation. Let� ⊂ Aut(�◦) be a �nite group that acts
on �◦ by quasi-algebraic automorphisms. If

- ⊂ {®0 ∈ �◦ : isotropy � ®0 is not trivial}
is any irreducible complex subspace, then - is contained in the translate of a proper quasi-
algebraic subgroup of �◦.

Proof. We assume that the group� is non-trivial, or else there is nothing to prove. Since

� is �nite, there will be an element 6 ∈ � \ {4} that �xes - pointwise. Shrinking � and

enlarging- , we may therefore assume without loss of generality that� is cyclic,� = 〈6〉,
and that - is a component of Fix(�).

Recall from Proposition 3.18 that the action of 6 on �◦ is of the form

6 : �◦ → �◦, ®0 ↦→ i◦ ( ®0) − ®00

where i◦ : �◦ → �◦ is a quasi-algebraic group morphism and ®00 ∈ �◦ is a constant. It

follows that ®0 ∈ Fix(6) if and only if

(
i◦ − Id�◦

)
( ®0) = ®00. If ®G ∈ - is any element, this

implies that

Fix(�) = ker(i◦ − Id�◦ ) + ®G .
But by Fact 3.28, the components of ker(i◦ − Id�◦ ) are translates of quasi-algebraic sub-

groups. �

4. The Albanese of a logarithmic pair

To prepare for the slightly involved constructions later in this paper, we recall a num-

ber of facts about the Albanese for logarithmic pairs. For lack of references, we include a

full discussion the Albanese construction in the singular Kähler case. We refer the reader

to [Ser59] and [Wit08, Appendix A] for general results in the algebraic se�ing, and to

[NW14, Sect. 4.5] for a construction of the Albanese for logarithmic pairs (-, �) in case

where - is a compact Kähler manifold and � a reduced divisor that does not necessarily

have snc support.

Se�ing 4.1. Let (-, �) be a log pair where - is compact. In line with [KR24a, Nota-

tion 2.14], denote the open part by - ◦ := - \ � .

De�nition 4.2 (�e Albanese for compact log pairs). Assume Se�ing 4.1. An Albanese
of (-, �) is a semitoric variety Alb(-, �)◦ ⊂ Alb(-, �) together with a quasi-algebraic
morphism

alb(-, �)◦ : - ◦ → Alb(-, �)◦

that satis�es the following universal property. If �◦ ⊂ � is any semitoric variety and

0◦ : - ◦ → �◦

is any quasi-algebraic morphism, then there exists a unique morphism 1◦ that makes the
following diagram commute,

(4.2.1) - ◦ Alb(-, �)◦ �◦.
alb(-,�)◦

0◦

∃!1◦

�e morphism 1◦ is quasi-algebraic.

Remark 4.3 (�asi-Albanese). �e Albanese of an snc logarithmic pair also appears under

the name “quasi-Albanese” in the literature, cf. [Fuj24].

Notation 4.4 (Empty boundary). If the divisor � in De�nition 4.2 is zero, we will o�en

drop it from the notation and write alb(- )◦ : - ◦ → Alb(- )◦ = Alb(- ) for brevity.
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Remark 4.5 (Compacti�cation and presentation of Alb(-, �)◦). In the se�ing of De�ni-

tion 4.2, recall from Facts 3.11 and 3.13 that the semitoric compacti�cation Alb(-, �)◦ ⊂
Alb(-, �) de�nes a unique presentation of the semitorus Alb(-, �)◦. If (-, �) is snc, the

construction presented in Section 4.2 will show that this presentation equals the natural

morphism Alb(-, �)◦ � Alb(- ) induced by the universal property.

Explanation 4.6. �e reader coming from algebraic geometry might wonder why De�n-

ition 4.2 is so complicated. �e reason is this: if + ◦ is a smooth, quasi-projective variety

and if + ◦ ⊂ +1 and + ◦ ⊂ +2 are two projective compacti�cations, then +1 and +2 are

birational and there exists a third compacti�cation that dominates both.

�is is no longer true in complex geometry, where two compacti�cations need not

necessarily be bimeromorphic, and where the bimeromorphic equivalence class of a par-

ticular compacti�cation is o�en part of the data. Along these lines, the Albanese is not just

the semitorus Alb(-, �)◦, but the semitorus together with a bimeromorphic equivalence

class of a compacti�cation Alb(-, �). �e word “quasi-algebraic” that appears all over

De�nition 4.2 ensures that all morphisms respect the classes of the compacti�cations.

4.1. Uniqueness. �e universal property of the Albanese guarantees that Alb(-, �)◦
and alb(-, �)◦ are unique up to unique isomorphism. �e le�-invariant compacti�ca-

tion Alb(-, �) is bimeromorphically unique. Following the classics, we abuse notation

and refer to any Albanese as “the Albanese”, with associated semitoric Albanese vari-
ety Alb(-, �)◦ ⊂ Alb(-, �) and Albanese morphism alb(-, �)◦. Once we �x a point

0Alb(-,�)◦ ∈ Alb(-, �)◦ to equip Alb(-, �)◦ with the structure of a Lie group, Fact 3.25

on page 8 allows talking about subgroups of Alb(-, �)◦ that are quasi-algebraic for the

semitoric compacti�cation Alb(-, �)◦ ⊂ Alb(-, �).

4.2. Existence. �e existence of an Albanese is well-known for snc pairs, but hardly

discussed in the literature for arbitrary Kähler pairs. We brie�y recall the arguments in

the snc se�ing, use resolutions of singularities to construct a candidate for the Albanese in

general and prove that this candidate satis�es the properties spelled out in De�nition 4.2

above.

Proposition 4.7 (Existence of the Albanese of a Kähler log pair). In Se�ing 4.1, assume
that - is Kähler. �en, an Albanese of (-, �) exists.

We begin the proof by recalling the classic construction for snc pairs. For singular

pairs, Construction 4.8 will show how to build an Albanese using a resolution of singu-

larities. We conclude the proof of Proposition 4.7 on the following page, showing that

Construction 4.8 does indeed satisfy the necessary universal property.

Proof of Proposition 4.7 is (-, �) is snc. If the pair (-, �) of Se�ing 4.1 is snc, choose a

point G ∈ - ◦ and consider the group morphism

8 : c1 (- ◦, G) → � 0
(
-, Ω1

- (log�)
)∗

obtained by path integration. Set

Alb(-, �)◦ := � 0
(
-, Ω1

-
(log�)

)∗/
img(8)

and de�ne alb(-, �)◦ by path integration. Hodge theory guarantees that Alb(-, �)◦ is a

semitorus. It admits a presentation as a principal (C∗)×•-bundle over Alb(- ), and hence

by Fact 3.12 on page 5 an equivariant compacti�cation Alb(-, �) as a (P1)×•-bundle over

Alb(- ). A local computation shows that alb(-, �)◦ is quasi-algebraic for this compacti-

�cation. More precisely, it extends to a meromorphic map - d Alb(-, �) that is holo-

morphic on the big open subset - \ (supp�)sing. We refer the reader to [NW14, Sect. 4]

for details and proofs. �
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Construction 4.8 (Construction of the Albanese of a log pair). Assume the se�ing of Pro-

position 4.7. For the reader’s convenience, we subdivided the construction into relatively

independent steps.

Step 1 in Construction 4.8, Resolution of singularities. Choose a log-resolution c : -̃ � - ,

consider the reduced snc divisor �̃ := suppc−1 (�) on -̃ and write -̃ ◦ := -̃ \ �̃ . �e proof

of Proposition 4.7 in the snc case provides us with an Albanese of (-̃ , �̃) that we brie�y

denote as

(4.8.1)

-̃ -̃ ◦ Alb(-̃ , �̃)◦︸       ︷︷       ︸
=:�̃◦

Alb(-̃ , �̃)︸      ︷︷      ︸
=:�̃

- - ◦.

c , log resolution

⊇

c◦

0̃◦ := alb(-̃ ,�̃)◦

quasi-algebraic

⊆

⊇

Step 2 in Construction 4.8, �otients by subgroups of �̃◦. Choose an element 0
�̃◦ ∈ �̃◦ in

order to equip �̃◦ with the structure of a Lie group. If � ◦ ⊆ �̃◦ is any quasi-algebraic

subgroup, recall from Fact 3.27 that the quotient

�◦� ◦ := �̃◦
/
� ◦

is a semitorus and there exists a semitoric compacti�cation �◦
� ◦ ⊂ �� ◦ that renders the

quotient morphism @◦
� ◦ : �̃◦ � �◦

� ◦ quasi-algebraic. If the composed map

@◦� ◦ ◦ 0̃◦ : -̃ ◦ → �◦�

is constant on c◦-�bers, then it factors via c◦, and we obtain an extension of Dia-

gram (4.8.1) as follows,

(4.8.2)

-̃ -̃ ◦ �̃◦ �̃

- - ◦ �◦
� ◦ �� ◦

c , log resolution

⊇

c◦

0̃◦ , quasi-algebraic

@◦
�◦

⊆

@�◦

⊇
0◦
�◦

⊆

�e quotient carries a natural structure of a Lie group that makes @◦
� ◦ a group morphism.

Lemma 2.4 guarantees that 0◦
� ◦ is again quasi-algebraic.

Step 3 in Construction 4.8, Identifying a suitable subgroup of �◦. Aiming to construct an

Albanese for (-, �) using the construction of Step 2, we need to �nd a quasi-algebraic

subgroup � ◦ ⊆ �◦ to which Step 2 can be applied. To this end, consider the set of all

subgroups that satisfy the assumptions of Step 2,

H ◦ := {�◦ ⊆ �̃◦ quasi-algebraic : @◦�◦ ◦ 0̃◦ is constant on c◦-�bers}.

Take� ◦ as the in�mum ofH ◦ in the complete la�ice of all quasi-algebraic subgroups �̃◦.
In other words, de�ne

� ◦ :=
⋂

�◦∈H◦
�◦

and recall from Fact 3.26 that � ◦ is indeed a quasi-algebraic subgroup. With this choice,

observe that @◦
� ◦ ◦ 0̃◦ is again constant on c◦-�bers, so that � ◦ is in fact the minimal

element of H ◦. Step 2 equips us with a semitoric compacti�cation �◦
� ◦ ⊂ �� ◦ and a

diagram of Form (4.8.2). Write Alb(-, �)◦ ⊂ Alb(-, �) for �◦
� ◦ ⊆ �� ◦ and denote the

quasi-algebraic morphism 0◦
� ◦ by

alb(-, �)◦ : - ◦ → Alb(-, �)◦.
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Construction 4.8 ends here.

Proof of Proposition 4.7. It remains to show that the varieties and morphism of Construc-

tion 4.8 satisfy the conditions spelled out in De�nition 4.2 above. To this end, assume

that �◦ ⊂ � is a semitoric variety and 0◦ : - ◦ → �◦ is a quasi-algebraic morphism.

Item (2.4.1) of Lemma 2.4 guarantees that 0◦ ◦ c◦ : -̃ ◦ → �◦ is quasi-algebraic. �e uni-

versal property of the Albanese Alb(-̃ , �̃)◦ of the snc pair (-, �) thus gives us a unique

quasi-algebraic morphism 1̃◦ of Lie groups that makes the following diagram commute,

-̃ ◦ Alb(-̃ , �̃)◦

- ◦ Alb(-, �)◦ �◦.

alb(-̃ ,�̃)◦

c◦ @◦
�◦

∃!1̃◦

alb(-,�)◦

0◦

want: 1◦

Consider the element 1̃◦ (0
Alb(-̃ ,�̃)◦ ) ∈ �◦ to equip �◦ with the structure of a Lie group

that makes 1̃◦ a group morphism. Since the composed map

1̃◦ ◦ alb(-̃ ,�̃)◦ = alb(-, �)◦ ◦ c◦

is constant on c◦-�bres, the choice of � ◦ in Step 3 of Construction 4.8 immediately guar-

antees that

ker@◦� ◦ = �
◦ ⊆ ker 1̃◦.

It follows that there is a unique Lie group morphism 1◦ : Alb(-, �)◦ → �◦ that makes

the diagram commute. Item (2.4.2) of Lemma 2.4 guarantees that 1◦ is quasi-algebraic, as

desired. �e fact that 1̃◦ is unique as a morphism of varieties implies that 1◦ is unique as

a morphism of varieties. �

4.3. Additional properties. �e Albanese has numerous properties that we will use in

the sequel. While all of those necessarily follow from the universal property that determ-

ines the Albanese uniquely, we �nd it o�en easier to use the concrete construction of the

Albanese in 4.8, which quickly reduces us to the snc se�ing where all results are known

and readily citable.

Proposition 4.10 (Image of alb generates Alb). In Se�ing 4.1, assume that - is Kähler.
Let G ∈ - ◦ be any point and use

0Alb(-,�)◦ (G) := alb(-, �)◦ (G) ∈ Alb(-, �)◦

to equip Alb(-, �)◦ with the structure of a Lie group. �en, the image of alb(-, �)◦ generates
Alb(-, �)◦ as an Abelian group.

Proof. If (-, �) is snc, this is [NW14, Prop. 4.5.11]. In general, consider Diagram (4.8.2)

of Construction 4.8, use that img alb(-̃ , �̃)◦ generates Alb(-̃ , �̃)◦ and that the quotient

map

@◦� ◦ : Alb(-̃ , �̃)◦ � Alb(-, �)◦

is surjective. �

Proposition 4.11 (Group actions). In Se�ing 4.1, assume that - is Kähler. Given a �nite
subgroup � of Aut(-, �), there exists an Albanese Alb(-, �)◦ ⊂ Alb(-, �) where � acts
on the pair (Alb(-, �),ΔAlb(-,�)◦ ) in a way that makes the morphisms

- ◦ Alb(-, �)◦ Alb(-, �)alb(-,�)◦

equivariant.
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Remark 4.12 (Equivariant presentation of the Albanese). In the se�ing of Proposition 4.11,

the group� will also act on the pair (-, 0) and hence on the Albanese Alb(- ). Continuing

Remark 4.5, we leave it to the reader to check that the presentation morphism

Alb(-, �) Alb(- )

is likewise �-equivariant.

Proof of Proposition 4.11. �e group action on Alb(-, �)◦ are of course induced by the

universal property. In fact, given any automorphism 6 ∈ Aut(-, �), consider the diagram

- ◦ Alb(-, �)◦

- ◦ Alb(-, �)◦,

6

alb(-,�)◦

∃!f (6)

alb(-,�)◦

where f (6) is the quasi-algebraic morphism of semitori given by the universal property.

An elementary computation shows that the morphism

Aut(-, �) → Aut

(
Alb(-, �)◦

)
, 6 ↦→ f (6)

is indeed a group morphism that makes the morphism to Alb(- ) equivariant. Corol-

lary 3.21 on page 8 allows �nding a �-equivariant, semitoric compacti�cation. �

4.3.1. Resolution of singularities. Construction 4.8 makes it easy to compare the Albanese

of a pair with the Albanese of a resolution of singularities. To begin, we observe that a

surjection of pairs induces a surjection between the Albanese varieties.

Observation 4.13 (Surjective morphisms). Let (-, �- ) and (., �. ) be two log pairs, where

- and . are compact Kähler spaces. Given a quasi-algebraic surjection i◦ : - ◦ � . ◦, the

universal property of the Albanese yields a diagram of the form

- ◦ Alb(-, �- )◦

. ◦ Alb(., �. )◦.

alb(-,�- )◦

i◦ alb(i◦)

alb(.,�. )◦

Choosing a point G ∈ - ◦ and using

0Alb(-,�- )◦ := alb(-,�- )◦ (G) ∈ Alb(-, �- )◦

0Alb(.,�. )◦ := alb(.,�. )◦ (i◦G) ∈ Alb(., �. )◦

to equip Alb(-, �- )◦ and Alb(., �. )◦with Lie group structures, alb(i◦) becomes a quasi-

algebraic Lie group morphism. �e image of alb(i◦) is thus a subgroup that contains the

image of alb(., �. )◦ and hence generates Alb(., �. )◦ as a group. It follows that alb(i◦)
is surjective.

Proposition 4.14 (�e Albanese and the Albanese of a log resolution). In Se�ing 4.1,
assume that - is Kähler. Let c : -̃ → - be a log resolution of the pair (-, �). Consider the
reduced divisor �̃ := suppc−1 (�) and the associated diagram

-̃ ◦ Alb(-̃ , �̃)◦

- ◦ Alb(-, �)◦.

alb(-̃ ,�̃)◦

c◦ alb(c◦) , surj. by Obs. 4.13

alb(-,�)◦
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In particular, observe that

(4.14.1) dim Alb(-, �)◦ ≤ dim Alb(-̃ , �̃)◦.
If - ◦ has only rational singularities, then alb(c◦) is isomorphic and Inequality (4.14.1) is an
equality.

Proof. �e assumption that - ◦ has only rational singularities implies that every form

f ∈ � 0
(
-̃ ◦, Ω1

-̃

)
vanishes when restricted to the smooth locus of any c◦-�bre, [Nam01,

Lem. 1.2]. �is applies in particular to di�erential forms coming from Alb(-̃ , �̃)◦. Since

the cotangent bundle of Alb(-̃ , �̃)◦ is free, we �nd that alb(-̃ , �̃)◦ maps c◦-�bres to

points. �e map alb(-̃ , �̃)◦ therefore factors via c◦, and the group� ◦ of Construction 4.8

is therefore trivial, � ◦ = {0}. �

4.3.2. Description in terms of di�erentials. As in the classic case, the Albanese of a singular

pair can be described in terms of di�erentials, as a Lie group quotient of a dualized space

of one-forms. �e following observation makes this statement precise.

Observation 4.15 (Presentation of the Albanese as a Lie group quotient). In the se�ing of

Proposition 4.14, choose a point G̃ ∈ -̃ and use

0
Alb(-̃ ,�̃)◦ := alb(-̃ , �̃)◦ (G̃) ∈ Alb(-̃ , �̃)◦

0Alb(-,�)◦ := alb(-, �)◦ (c◦G̃) ∈ Alb(-, �)◦

to equip Alb(-̃ , �̃)◦ and Alb(-, �)◦ with Lie group structures that make alb(c◦) a group

morphism. Since c is surjective, the push-forward of any torsion free sheaf is torsion free,

and we obtain an injection

(4.15.1) c∗Ω
1

-̃
(log �̃) ↩→ Ω [1]

-
(log�),

which presents Alb(-, �)◦ as a Lie group quotient,

� 0
(
-, Ω [1]

-
(log�)

)∗
� � 0

(
-̃ , Ω1

-̃
(log �̃)

)∗
dual of (4.15.1)(4.15.2)

� Alb(-̃ , �̃)◦ quotient by c1 (-̃ ◦, G̃)(4.15.3)

� Alb(-, �)◦ quotient by quasi-algebraic.(4.15.4)

�e pull-back morphism for logarithmic di�erentials introduced in Remark 3.17 on page 7,

d alb(-, �) : � 0

(
Ω1

Alb(-,�) (logΔ)
)
→ � 0

(
-, Ω [1]

-
(log�)

)
,

is the induced map between dual Lie algebras, hence injective. Observation 4.15 ends

here.

Corollary 4.16 (Dimension of Alb). In Se�ing 4.1, assume that - is Kähler. �en, the
dimension of Alb(-, �)◦ satis�es the inequality

(4.16.1) dim Alb(-, �)◦ ≤ ℎ0
(
-, Ω [1]

-
(log�)

)
.

If the pair (-, �) is Du Bois and if - ◦ has rational singularities, then (4.16.1) is an equality.

Proof. �e inequality follows directly from Observation 4.15 above. Assuming that (-, �)
is Du Bois and that - ◦ has rational singularities, we show that the composed surjection

(4.15.2)–(4.15.4) has a discrete kernel.

To begin, recall that since - ◦ has rational singularities, Proposition 4.14 asserts that

(4.15.4) is an isomorphism. Its kernel is hence trivial. �e kernel of (4.15.3) is discrete.

We claim that (4.15.2) is likewise isomorphic. To this end, decompose (4.15.1) as

(4.16.2) c∗Ω
1

-̃
(log �̃) 0

↩→ c∗Ω
1

-̃
(log �̃ + Excc) 1

↩→ Ω [1]
-
(log�).

Recall from [KS21, Cor. 1.8, Rem. 1.9] that 0 is isomorphic because - ◦ has rational singu-

larities. Recall from [GK14, �m. 4.1] that 1 is isomorphic because (-, �) is Du Bois. �
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Remark 4.17 (Relation to Minimal Model �eory). Recall the classic results that log-

canonical pairs are Du Bois and that the space underlying a log-terminal pair has rational

singularities. Corollary 4.16 will therefore give an equality if the pair (-, �) is dlt in the

sense of Minimal Model �eory, [KM98, Def. 2.37].

Remark 4.18 (Improvements). Corollary 4.16 is probably not optimal. Using the notion of

“weakly rational singularities” introduced in [KS21, Sect. 1.4] and the extension results

of [Par23, Tig23], the assumptions on rational singularities might be weakened, at the

expense of introducing technically challenging singularity classes, [KM98, �m. 5.23] and

[Kol13, Sect. 6.2].

We leave the proof of the following fact to the reader.

Fact 4.19 (Image of d0 and ker(1)). In the se�ing of Observation 4.15, assume we are given
a factorization as in Diagram (4.2.1). Consider the linear subspace

, := img

(
d0 : � 0

(
�,Ω1

� (logΔ�)
)
→ � 0

(
-, Ω [1]

-
(log�)

) )
,

write, ⊥ ⊆ � 0
(
-, Ω [1]

-
(log�)

)∗ for its annihilator and recall from Observation 4.15 above
that there exists a natural surjection of Lie groups

[ : � 0
(
-, Ω [1]

-
(log�)

)∗
� Alb(-, �)◦.

�en, ker(1◦) = [
(
, ⊥

)
. �

4.4. Examples. �e following example shows that the Inequalities (4.14.1) and (4.16.1)

will generally be strict, even for pairs with no boundary and with the simplest log-

canonical singularities.

Example 4.20 (Strict inequalities). Consider closed immersions � ( P2 ( P3
where � is

an elliptic curve and where P2
is linearly embedded into P3

. Let - ⊂ P3
be the projective

cone over �. Since - is rationally connected, morphisms to semitori will necessarily be

constant. It follows that the Albanese of (-, 0) will be trivial. Next, let c : -̃ → - be

the resolution of singularities, obtained as the blow-up of the unique singular point in - .

Since -̃ is a P1
-bundle over �, its Albanese equals �. �e following diagram summarizes

the situation,

-̃ Alb(-̃ ) �

- Alb(- ) {0}.

alb(-̃ )

c alb(c )

=

alb(- )
=

Inequality (4.14.1) is strict in this case. �e inequalities

1 = ℎ0
(
�, Ω1

�

)
≤ ℎ0

(
-̃ , Ω1

-̃

)
= ℎ0

(
-̃ , c∗Ω

1

-̃

)
≤ ℎ0

(
-, Ω [1]

-

)
show that (4.16.1) is likewise strict.

In case where the underlying space- of a pair (-, �) is smooth, the following example

shows that the Albanese of (-, �) agrees with the Albanese of a log resolution. Together

with [NW14, Rem. 4.5.10], this implies that our construction of Albanese agrees with that

of [NW14, Sect. 4.5], even though the two constructions might initially look di�erent.

Example 4.21 (Albanese in case where the underlying space is smooth). In Se�ing 4.1,

assume that - is a Kähler manifold and let Alb(-, �)◦ ⊂ Alb(-, �) be an Albanese of

(-, �), with Albanese morphism alb(-, �)◦ : - ◦ → Alb(-, �)◦.
If c : -̃ � - , is a log-resolution of the pair (-, �) and �̃ := suppc−1 (�) the reduced

preimage divisor, then Construction 4.8 immediately shows that Alb(-, �)◦ ⊂ Alb(-, �)
is also an Albanese of (-̃ , �̃), with Albanese morphism alb

◦ (-̃ , �̃) = alb(-, �)◦ ◦ c .
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Part II. �e Albanese of a cover

5. The Albanese of a cover and the Albanese irregularity

Generalizing the Albanese of a logarithmic pair, we construct an Albanese a�ached to

every cover -̂ � - of a given C-pair (-, �), which need not be logarithmic. Recalling

that the Albanese of a logarithmic snc pair is a “universal” morphism to a semitoric variety

that induces all logarithmic di�erentials, we de�ne the Albanese of a cover as a “universal”

morphism from -̂ to a semitoric variety such that every pull-back di�erential is adapted.

We consider the following se�ing throughout the present section.

Se�ing 5.1. Let (-, �) be a C-pair where - is compact and let W : -̂ � - be a cover of

(-, �). Consider the reduced divisor

�̂ :=
(
W∗b�c

)
red
∈ Div(-̂ )

and write -̂ ◦ := -̂ \ supp �̂ .

We underline that Se�ing 5.1 does not assume that W is adapted, that -̂ is smooth,

or that W∗� has nc support. �e following de�nition of the Albanese will therefore use

adapted re�exive di�erentials.

De�nition 5.2 (�e Albanese of a cover of a C-pair). Assume Se�ing 5.1. An Albanese of

(-, �,W) is a semitoric variety Alb(-, �,W)◦ ⊂ Alb(-, �,W) together with a quasi-algebraic
morphism

alb(-, �,W)◦ : -̂ ◦ → Alb(-, �,W)◦

such that the following holds.

(5.2.1) �e pull-back morphism for logarithmic di�erentials of Remark 3.17,

� 0

(
Ω1

Alb(-,�,W ) (logΔ)
)

d alb(-,�,W )
−−−−−−−−−→ � 0

(
-̂ , Ω [1]

-̂
(log �̂)

)
,

takes its image in the subspace � 0

(
-̂ , Ω [1](-,�,W )

)
⊆ � 0

(
-̂ , Ω [1]

-̂
(log �̂)

)
.

(5.2.2) If�◦ ⊂ � is any semitoric variety, if0◦ : -̂ ◦ → �◦ is any quasi-algebraic morphism
such that the pull-back morphism

d0 : � 0
(
�, Ω1

� (logΔ)
)
→ � 0

(
-̂ , Ω [1]

-̂
(log �̂)

)
takes its image in � 0

(
-̂ , Ω [1](-,�,W )

)
, then 0 factors uniquely as

-̂ ◦ Alb(-, �,W)◦ �◦,
alb(-,�,W )◦

0◦

∃!1◦

where 1◦ is quasi-algebraic.

Remark 5.3 (Pull-back of ?-di�erentials). Item (5.2.1) of De�nition 5.2 can be phrased

in terms of sheaf morphisms. Recall from [NW14, Cor. 5.4.5] that the locally free sheaf

Ω1

Alb(-,�,W ) (logΔ) is free and hence globally generated. Item (5.2.1) is therefore equivalent

to the following, seemingly stronger statement: If ? is any number, then the composed

pull-back morphism

(alb(-, �,W)◦)∗ Ω?
Alb(-,�,W )◦ → Ω

[? ]
-̂ ◦

takes its image in the subsheaf Ω
[? ]
(- ◦,�◦,W ) ⊆ Ω

[? ]
-̂ ◦

.
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5.1. �e Albanese irregularity. Given a C-pair (-, �) and a cover W : -̂ � - , the

dimension of the Albanese is an important invariant of the triple (-, �,W).

De�nition 5.4 (Albanese irregularity, augmented Albanese irregularity). Assume Set-
ting 5.1. If an Albanese exists, then refer to the number

@Alb (-, �,W) := dim Alb(-, �,W)◦

as the Albanese irregularity of (-, �,W). �e number

@+
Alb
(-, �) = sup

{
@Alb (-, �,W) | W a cover

}
∈ N ∪ {∞}

is the augmented Albanese irregularity of the C-pair (-, �).

We will show in Section 7 that the augmented Albanese irregularity @+
Alb
(-, �) is �nite

if - is Kähler and if the C-pair (-, �) is special.

5.2. Uniqueness and existence. As before, the universal property spelled out in

Item (5.2.2) implies that Alb(-, �,W)◦ is unique up to unique isomorphism. �e com-

pacti�cation Alb(-, �,W) is bimeromorphically unique. As before, we abuse notation

and refer to any Albanese as “the Albanese”, with associated semitoric Albanese variety
Alb(-, �,W)◦ ⊂ Alb(-, �,W) and quasi-algebraic Albanese morphism alb(-, �,W)◦.

Proposition 5.5 (Existence of the Albanese of a cover). In Se�ing 5.1, assume that - is
Kähler. �en, an Albanese of (-, �,W) exists. Its dimension satis�es the inequality

dim Alb(-, �,W)◦ ≤ @(-, �,W).
If Ĝ ∈ -̂ ◦ is any point and if we use

0Alb(-,�,W )◦ := alb(-, �,W)◦ (Ĝ) ∈ Alb(-, �,W)◦

to equip Alb(-, �,W)◦ with the structure of a Lie group, then the image of alb(-, �,W)◦
generates Alb(-, �,W)◦ as an Abelian group.

�e proof of Proposition 5.5 requires some preparation. We give it in Section 6.2,

starting from Page 23 below. Assuming for the moment that the Albanese can be shown

to exist, the subsequent Sections 5.3–5.5 gather its most important properties.

5.3. Inequalities between irregularities. If (-, �) is a C-pair where - is compact

Kähler and if W : -̂ � - is a cover of (-, �), we have seen in Proposition 5.5 that

the Albanese irregularity is bounded by the irregularity,

(5.6.1) @Alb (-, �,W) ≤ @(-, �,W).
�ere are se�ings where Inequality (5.6.1) is strict and the natural morphism

� 0

(
Ω1

Alb(-,�,W ) (logΔ)
)

d alb(-,�,W )
−−−−−−−−−→ � 0

(
-̂ , Ω [1](-,�,W )

)
is not surjective. Equivalently said: there are se�ings where it is not true that every

adapted re�exive di�erential on -̂ comes from a logarithmic di�erential on the Albanese.

A �rst example has already been discussed in the previous section.

Example 5.7 (Strict inequality between irregularities). Let - be the cone over the elliptic

curve discussed in Example 4.20 on page 15. Let Id- : - → - be the trivial covering. We

have seen in Example 4.20 that

@(-, 0, Id- ) = ℎ0
(
-, Ω1

(-,0,Id- )
)
= ℎ0

(
-, Ω [1]

-

)
is positive while Alb(-, 0, Id- ) = Alb(- ) is a point, so that @Alb (-, 0, Id- ) = 0.

Example 5.7 might seem arti�cial, given that - has an elliptic singularity. While

smooth examples exist, they are more complicated to construct. We have therefore chosen

to publish details elsewhere. Section 10.2 asks related questions for inequalities between

augmented irregularities.
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5.4. Functoriality in sequences of covers. �e following immediate consequence of

the universal property will be used later.

Lemma 5.8 (Functoriality of the Albanese). Let (-, �) be a C-pair where - is compact
Kähler. Let

-̂1 -̂2 -
W1 W2

be a sequence of covers. Consider the reduced divisors

�̂2 :=
(
W∗

2
b�c

)
red

and �̂1 :=
(
(W2 ◦ W1)∗b�c

)
red

and write -̂ ◦• := -̂• \ supp �̂•. �en, there exists a unique surjection 2◦ that renders the
following diagram commutative,

(5.8.1)

-̂ ◦
1

Alb(-, �,W2 ◦ W1)◦

-̂ ◦
2

Alb(-, �,W2)◦

- ◦.

W1 |-̂ ◦
1

alb(-,�,W2◦W1)◦

∃!2◦

alb(-,�,W2)◦

W2 |-̂ ◦
2

�e morphism 2◦ is quasi-algebraic.

Proof. Uniqueness and surjectivity of 2◦ (if it exists) follows from Proposition 5.5, which

asserts that the images of alb• (•)◦ generate Alb• (•)◦ as groups once suitable structures

of Lie groups are chosen.

Existence of 2◦ as a quasi-algebraic morphism follows from the universal property of

the Albanese. To be precise, recall from Property (5.2.1) that the pull-back morphism

alb(-, �,W2)∗ : � 0
(
Ω1

Alb(-,�,W2) (logΔ)
)
→ � 0

(
-̂2, Ω

[1]
-̂2

(log �̂1)
)

takes its image in� 0
(
-̂2, Ω

[1]
(-,�,W2)

)
. As a consequence, we �nd that the pull-back morph-

ism (
alb(-, �,W2) ◦ W1

)∗
: � 0

(
Ω1

Alb(-,�,W2) (logΔ)
)
→ � 0

(
-̂1, Ω

[1]
-̂1

(log �̂1)
)

takes its image in

(5.8.2) � 0
(
-̂1, W

[∗]
1

Ω [1](-,�,W2)
)
⊆ � 0

(
-̂1, Ω

[1]
(-,�,W2◦W1)

)
,

where the inclusion in (5.8.2) is [KR24a, Obs. 4.14]. As pointed out above, the universal

property of the Albanese Alb(-, �,W2◦W1)◦ now gives a unique quasi-algebraic morphism

2◦ that makes Diagram (5.8.1) commute. �

5.5. �e Albanese of a Galois cover. Lemma 5.8 applies in particular in case where

-̂1 = -̂2 are equal and where W1 is a Galois automorphism of the cover W2. We �nd that

the Galois group acts on the Albanese and that the Albanese morphism is equivariant.

Observation 5.9 (Galois action on the Albanese of a cover). In Se�ing 5.1, assume that

- is Kähler and that the cover W is Galois with group � . Recall from [KR24a, Obs. 4.19]

that Ω [1](-,�,W ) carries a natural�-linearisation that is compatible with the natural Aut(-̂ )-
linearisations of Ω [1]

-̂
. In complete analogy to Proposition 4.11, it follows from Lemma 5.8

that � acts on Alb(-, �,W)◦ by quasi-algebraic automorphisms, in a way that makes the

morphism alb(-, �,W)◦ equivariant. Corollary 3.21 on page 8 allows choosing a compac-

ti�cation

Alb(-, �,W)◦ ⊂ Alb(-, �,W), wri�en in short as �◦ ⊂ �,
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such that the �-action on �◦ extends to �, and such that �◦ ⊂ � is an Albanese for

(-, �,W). �

Construction 5.10 (Morphism to Galois quotient of the Albanese of a cover). In Observa-

tion 5.9, take quotients to �nd a diagram

(5.10.1)

-̂ ◦ �◦

- ◦ �◦
/
�

albĜ (-,�,W )◦

W , quotient
W� , quotient

0◦

where 0◦ is quasi-algebraic for the compacti�cations - ◦ ⊂ - and �◦/� ⊂ �/� . Propos-

itions 5.5 and 3.29 together guarantee that the image of albĜ (-, �,W)◦ is not contained

in the rami�cation locus of the quotient morphism W� : �◦ → �◦/� . �e image of 0◦ is

therefore not contained in the branch locus.

Diagram (5.10.1) is a commutative diagram of holomorphic morphisms between nor-

mal analytic varieties. We upgrade it to a commutative diagram of C-morphisms.

Observation 5.11 (C-Morphism to Galois quotient of the Albanese). �e variety �◦ of

Observation 5.9 and Construction 5.10 is a semitorus and therefore smooth. �e cri-

terion for C-morphisms spelled out in [KR24a, Prop. 8.6] therefore applies to show that

albĜ (-, �,W)◦ induces a morphism of C-pairs
3
,

alb(-, �,W)◦ : (-̂ ◦, 0) → (�◦, 0).
Taking the categorical quotients of C-pairs, [KR24a, Prop. 12.7] will thus yield a diagram

of C-morphisms between C-pairs as follows,

(5.11.1)

(-̂ ◦, 0) (�◦, 0)

(- ◦, � ′) (. ◦, �. ),

alb(-,�,W )

W , quotient W� , quotient

0◦

where

(- ◦, � ′) := (-̂ ◦, 0)
/
� and (. ◦, �. ) := (�◦, 0)

/
�.

Warning 5.12 (Boundary divisors in the quotient construction). �e boundary divisor � ′

in Observation 5.11 does not need to equal �◦. In fact, recall from [KR24a, Obs. 12.9] that

there is only an inequality � ′ ≥ �◦, which might be strict. As before, [KR24a, Prop. 10.4]

allows formulating this inequality by saying that the identity on - ◦ induces a morphism

of C-pairs,

Id- ◦ : (- ◦, � ′) → (- ◦, �◦).
Warning 5.12 ends here.

�e following proposition, which is central to everything that follows, claims that in

spite of Warning 5.12, the morphism 0◦ of Diagram (5.11.1) does induce a morphism of

C-pairs,

0◦ : (- ◦, �◦) → (. ◦, �. ).
�is is expressed in technical terms by saying that the quasi-algebraic C-morphism 0◦ of

Diagram (5.11.1) factorizes via the C-morphism Id- ◦ that we discussed in Warning 5.12.

3
In contrast, recall from [KR24a, Ex. 8.7 and 8.8] that a morphism between singular spaces /1 → /2 does

not always induce a C-morphism (/1, 0) → (/2, 0) .
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Proposition 5.13. In the se�ing of Observation 5.9 and Warning 5.12, the quasi-algebraic
C-morphism 0◦ of Diagram (5.11.1) factorizes via Id- ◦ : (- ◦, � ′) → (- ◦, �◦). In other
words, we obtain a diagram of C-morphisms,

(-̂ ◦, 0) (�◦, 0)

(- ◦, � ′) (- ◦, �◦) (. ◦, �. ),

alb(-,�,W )◦

W , quotient W� , quotient

Id- ◦

0◦

0◦

where img0◦ = img0◦ is not contained in the branch locus of the quotient morphism W�.

Proof. We aim to apply the criterion for C-morphisms spelled out in [KR24a, Prop. 9.3]

and consider the sub-diagram

-̂ ◦ �◦

- ◦ . ◦.

alb(-,�,W )◦

W , quotient W� , quotient

0◦

Recall [KR24a, Obs. 12.10], which asserts that W� is strongly adapted for the C-pair

(. ◦, �. ), and that the C-cotangent sheaf is Ω [1](. ◦,�. ,W�) = Ω1

�◦ . Given that �◦ is a semi-

torus, we �nd that Ω [1](. ◦,�. ,W�) is locally free. �e criterion for C-morphisms, [KR24a,

Prop. 9.3] therefore applies to show that 0◦ is a C-morphism as soon as we show that

there exists a sheaf morphism

d alb(-, �,W)◦ :

(
alb(-, �,W)◦

)∗
Ω [1](. ◦,�. ,W�) → Ω [1](- ◦,�◦,W )

that agrees with the standard pull-back of Kähler di�erentials wherever this makes sense.

�at is however precisely the statement of Remark 5.3. �e fact that img0◦ = img0◦ is

not contained in the branch locus of the quotient morphismW� has already been remarked

in Construction 5.10. �

5.6. Functoriality in sequences of Galois covers. �e following lemma combines and

summarizes the results of Sections 5.4 and 5.5.

Lemma 5.14 (Functoriality of the Albanese). In the se�ing of Lemma 5.8, assume that the
covering morphismsW2◦W1 andW2 are Galois, with groups�2 and�1 respectively. �en, there
exists a commutative diagram

-̂ ◦
1

Alb(-, �,W2 ◦ W1)◦

-̂ ◦
2

Alb(-, �,W2)◦

- ◦ Alb(-, �,W2 ◦ W1)◦
/
�1

Alb(-, �,W2)◦
/
�2

W1 |-̂ ◦
1

alb(-,�,W2◦W1)◦

2◦ , quot. of semitori

quotient

alb(-,�,W2)◦

W2 |-̂ ◦
2

quotient

alb(-,�,W2◦W1)◦

alb(-,�,W2)◦

2◦

where all morphisms are quasi-algebraic and all morphisms in the bo�om row are morphisms
of C-pairs, between (- ◦, �◦) and the natural C-structures on the quotient pairs.
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Proof. Except for the morphism 2◦, the diagram is a combination of Lemma 5.8 and

Proposition 5.13 above. In order to construct 2◦, observe that the group �2 is a quo-

tient @ : �1 � �2, and that �1 acts on -̂ ◦
2

via this quotient map, in a manner that

makes the morphism W1 |-̂ ◦
1

equivariant. �e universal properties of the two Albanese

maps alb(-, �,W2 ◦ W1)◦ and alb(-, �,W2)◦ will then guarantee that �1 acts on the Al-

banese varieties Alb(-, �,W2 ◦ W1)◦ and Alb(-, �,W2)◦ in a manner that makes the quo-

tient morphism 2◦ equivariant. �e map 2◦ is then the induced C-morphism between the

quotients pairs, as given by the universal property of C-pair quotients, [KR24a, Def. 12.3

and �m. 12.5]. �

6. The Albanese for a subspace of differentials

�is section proves the existence of an Albanese of a cover as a special case of the

“Albanese for a subspace of di�erentials”. We refer the reader to [Zuo99, Sect. 4.2] for

a related construction in the smooth, proper case. �roughout the present section, we

work in following se�ing.

Se�ing 6.1. Let (-, �) be a log pair where - is compact. Let + ⊆ � 0

(
-, Ω [1]

-
(log�)

)
be

a linear subspace.

De�nition 6.2 (�e Albanese for a subspace of di�erentials). Assume Se�ing 6.1. An
Albanese of (-, �,+ ) is a semitoric variety Alb(-, �,+ )◦ ⊂ Alb(-, �,+ ) together with a
quasi-algebraic morphism

alb(-, �,+ )◦ : - ◦ → Alb(-, �,+ )◦

such that the following holds.

(6.2.1) �e pull-back morphism of logarithmic di�erentials,

d alb(-, �,+ ) : � 0

(
Ω1

Alb(-,�,+ ) (logΔ)
)
→ � 0

(
-, Ω [1]

-
(log�)

)
takes its image in + .

(6.2.2) If�◦ ⊂ � is any semitoric variety and if 0◦ : - ◦ → �◦ is quasi-algebraic such that

d0 : � 0
(
�, Ω1

� (logΔ)
)
→ � 0

(
-, Ω [1]

-
(log�)

)
takes its image in + , then 0◦ factors uniquely as

- ◦ Alb(-, �,+ )◦ �◦,
alb(-,�,+ )◦

0◦

∃!1◦

where 1◦ is quasi-algebraic.

Warning 6.3. We do not claim or ask in Item (6.2.1) that the space+ is equal to the image

of the morphism d alb(-, �,+ ). See Section 6.3 on page 24 for a sobering example which

shows that surjectivity is a delicate property of the subspace + .

We will later consider De�nition 6.2 in a se�ing where the space + is of the form

+ = � 0
(
-, F

)
, for a subsheaf F ⊆ Ω1

-
(log�). �e following notion will be used.

De�nition 6.4 (�e Albanese for subsheaves of di�erentials). Assume Se�ing 6.1. If there
exists a subsheaf F ⊆ Ω1

-
(log�) such that + = � 0

(
-, F

)
, then we denote the Albanese

brie�y as alb(-, �,F )◦ : - ◦ → Alb(-, �,F )◦.
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6.1. Uniqueness and existence. As before, the universal property spelled out in

Item (6.2.2) implies that Alb(-, �,+ )◦ is unique up to unique isomorphism and that

Alb(-, �,+ ) is bimeromorphically unique. As before, we abuse notation and refer to any

Albanese as “the Albanese”, with associated semitoric Albanese variety Alb(-, �,+ )◦ ⊂
Alb(-, �,+ ) and quasi-algebraic Albanese morphism alb(-, �,+ )◦.

Proposition 6.5. Assume Se�ing 6.1. If - is Kähler, then an Albanese of (-, �,+ ) exists.
�e dimension is bounded by

(6.5.1) dim Alb(-, �,+ )◦ ≤ dimC+ .

If G ∈ - ◦ is any point and if we use

0Alb(-,�,+ )◦ := alb(-, �,+ )◦ (G) ∈ Alb(-, �,+ )◦

to equip Alb(-, �,+ )◦ with the structure of a Lie group, then the image of alb(-, �,+ )◦
generates Alb(-, �,+ )◦ as an Abelian group.

Example 6.8 on page 24 shows that Inequality (6.5.1) might be strict. As in Section 4.2,

we give a direct construction of one Albanese.

Construction 6.6 (Construction of the Albanese for a subspace of di�erentials). In Set-

ting 6.1, consider the annihilator +⊥ ⊆ � 0
(
-, Ω [1]

-
(log�)

)∗
and recall from Observa-

tion 4.15 that the construction of Alb(-, �)◦ equips us with a canonical holomorphic Lie

group morphism

(6.6.1) � 0
(
-, Ω [1]

-
(log�)

)∗
� Alb(-, �)◦.

�e image

�+ := img

(
+⊥ → Alb(-, �)◦

)
is then a subgroup of Alb(-, �) that may or may not be closed. Either way, Fact 3.26 on

page 9 allows taking the smallest quasi-algebraic subgroup � ⊆ Alb(-, �)◦ that contains

�+ . We write

Alb(-, �,+ )◦ := Alb(-, �)◦
/
�

and obtain morphisms

- ◦ Alb(-, �)◦ Alb(-, �,+ )◦.
alb(-,�)◦

alb(-,�,+ )◦

@◦ , quotient

Recall from Facts 3.23 and 3.27 that� and Alb(-, �,+ ) are isomorphic to semitori, and that

there exists a semitoric compacti�cation Alb(-, �,+ )◦ ⊆ Alb(-, �,+ ) that renders the

quotient morphism @◦ quasi-algebraic. With this choice of compacti�cation, Lemma 2.4

guarantees that the morphism alb(-, �,+ )◦ is quasi-algebraic, as desired.

Proof of Proposition 6.5. We need to verify that Construction 6.6 satis�es the properties

spelled out in Proposition 5.5. Once this is done, Proposition 4.10 on page 13 and sur-

jectivity of the quotient morphism @ guarantees that the image of alb(-, �,+ )◦ generates

Alb(-, �,+ )◦ as an Abelian group, as claimed.

Property (6.2.1). To prove Property (6.2.1), write, := img d alb(-, �,+ ) and recall that

img

(
+⊥ → Alb(-, �)◦

) constr.

⊆ ker(@◦) Fact 4.19

= img

(
, ⊥ → Alb(-, �)◦

)
.

Given that the Lie group morphism (6.6.1) has maximal rank, we �nd that+⊥ ⊆, ⊥ and

hence that + ⊇, , as desired.
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Property (6.2.2). Assume that a morphism 0◦ : - ◦ → �◦ as in Property (6.2.2) is given.

�e universal property of Alb(-, �) will then yield a factorization

- ◦ Alb(-, �)◦ �◦.
alb(-,�)◦

0◦

V◦ , quasi-algebraic

We claim that the quasi-algebraic morphism V◦ factors via @◦,

Alb(-, �)◦ Alb(-, �)◦
/
� �◦.

@◦ , quasi-algebraic

V◦ , quasi-algebraic

∃!1◦

Equivalently, we claim that � ⊆ ker(V◦). �is follows easily: writing

, := img

(
d0 : � 0

(
�, Ω1

� (logΔ)
)
→ � 0

(
-, Ω [1]

-
(log�)

) )
,

we know by assumption that , ⊆ + or equivalently, that , ⊥ ⊇ +⊥. By Fact 4.19 on

page 15, this is in turn equivalent to ker(V) ⊇ �+ . �e desired inclusion ker(V◦) ⊇ �

follows as soon as we recall from Fact 3.28 on page 9 that ker(V◦) is quasi-algebraic.

Lemma 2.4 on page 3 guarantees that 1◦ is quasi-algebraic, as required. �e statement

about the dimension is clear from the construction. �

6.2. Proof of Proposition 5.5. In the se�ing of Proposition 5.5, set

+ := � 0
(
-̂ , Ω [1](-,�,W )

)
.

Using the notation introduced in De�nition 6.4, Proposition 6.5 equips us with a semitoric

variety

Alb

(
-̂ , �̂,Ω [1](-,�,W )

)◦
⊂ Alb

(
-̂ , �̂,Ω [1](-,�,W )

)
and a quasi-algebraic morphism

alb

(
-̂ , �̂,Ω [1](-,�,W )

)◦
: -̂ ◦ → Alb

(
-̂ , �̂,Ω [1](-,�,W )

)◦
that we take as the Albanese of the cover W of the C-pair (-, �). A comparison of the

Properties (6.2.1)–(6.2.2) guaranteed by Proposition 6.5 with the Properties (5.2.1)–(5.2.2)

required by Proposition 5.5 concludes the proof. �

6.3. Examples. We end the present section with two simple examples.

Example 6.7. In the se�ing of De�nition 6.2, if + = {0}, then Alb(-, �,+ ) is a point.

Example 6.8. Let � be an elliptic curve. Set - = � × � and take � := 0 ∈ Div(- ). Pulling

back di�erentials from the two factors gives natural morphisms

dc8 : � 0
(
�, Ω1

�

)
→ � 0

(
-, Ω1

-

)
.

Choose a number g ∈ C and set+ := img

(
(dc1) + g · (dc2)

)
, which is a one-dimensional

linear subspace of � 0
(
-, Ω1

-

)
. �e following will hold.

• If g is non-rational, then �+ is dense in Alb(-, 0)◦ and Alb(-, 0,+ )◦ = {0}.
• Towards the other extreme, if g = 0, then Alb(-, 0,+ )◦ = Alb(�).
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7. Boundedness of the Albanese irregularity for special pairs

Following Ueno’s work [Uen75], Campana has remarked in [Cam04, Sect. 5.2] that

the Albanese morphism of a special manifold is always surjective. We extend Campana’s

observation to the Albanese of a cover. For C-pairs that are special in the sense of [KR24a,

Def. 6.11], the following theorem implies that the dimension of the Albanese is bounded

by the dimension of - . In particular, it cannot go to in�nity as we consider higher and

higher covers. Along these lines, we view the theorem as a boundedness result.

�eorem 7.1 (C-pairs whose Albanese morphism is not dominant). In Se�ing 5.1, assume
that- is Kähler. If the Albanese morphism alb(-, �,W)◦ is not dominant, then there exists a
number 1 ≤ ? ≤ dim- and a coherent rank-one subsheaf L1 ⊂ Ω

[? ]
(-,�,Id- ) with C-Kodaira-

Iitaka dimension ^C (L1) ≥ ? .

We refer the reader to [KR24a, Sect. 6] for the de�nition of “C-Kodaira-Iitaka dimen-

sion” and for the related notions of “special pairs” and “Bogomolov sheaves”.

Corollary 7.2 (�e Albanese for covers for special pairs). In Se�ing 5.1, assume that - is
Kähler. If (-, �) is special, then the Albanese morphism alb(-, �,W)◦ is dominant. �

�e proof of �eorem 7.1 is given in Section 7.2, starting from Page 27 below.

Remark 7.3. Recall from De�nition 5.2 that the Albanese morphism alb(-, �,W)◦ is quasi-

algebraic, so that topological closure of its image,

img alb(-, �,W)◦ ⊆ Alb(-, �,W)◦,
is always analytic. �e word “dominant” in �eorem 7.1 and Corollary 7.2 is therefore

meaningful.

Remark 7.4. Assume Se�ing 5.1. If the C-pair (-, �) is special, Corollary 7.2 implies in

particular that @+
Alb
(-, �,W) ≤ dim- .

Even for special pairs, one cannot expect that the Albanese morphism alb(-, �,W)◦ is

surjective. �e following simple example shows what can go wrong.

Example 7.5 (Failure of surjectivity). Let ) be a compact torus and let C ∈ ) be any

point. Let - be the blow-up of ) in C and let � ∈ Div(- ) be the exceptional divisor, with

multiplicity one. �en, the logarithmic pair (-, �) is special, the Albanese for the identity

morphism equals Alb(-, �, Id- )◦ = ) and

img alb(-, �,W)◦ = ) \ {C}.

7.1. Failure of dominance. To prepare for the proof of �eorem 7.1, we analyse the

se�ing where the Albanese of a cover fails to be dominant. �e construction presented

here will also be used in the forthcoming paper [KR24b], where we prove a C-version of

the Bloch-Ochiai theorem.

Se�ing 7.6 (Failure of dominance). In Se�ing 5.1, assume that - is Kähler. Assume that

the coverW is Galois with group� , and use Corollary 3.21 on page 8 to choose an Albanese

Alb(-, �,W)◦ ⊂ Alb(-, �,W), wri�en in short as Alb
◦ ⊂ Alb,

such that the �-action on Alb
◦

extends to Alb. Recall that the Albanese morphism alb
◦

is quasi-algebraic. �e topological closure of the image, ℵ := img alb
◦
, is thus an analytic

subset of Alb. Set ℵ◦ := ℵ ∩ Alb
◦

and assume that ℵ◦ is a proper subset, ℵ◦ ( Alb
◦
.

Finally, choose an element Ĝ ∈ -̂ ◦ and use its image point

0
Alb
◦ := alb

◦ (Ĝ) ∈ Alb
◦

to equip Alb
◦

with the structure of a Lie group.
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Remark 7.7 (Stabilizer groups). In Se�ing 7.6, recall from [NW14, Prop. 5.3.16] that the

stabilizer subgroup

St
Alb
◦ (ℵ◦) =

{
0 ∈ Alb

◦ | 0 + ℵ◦ = ℵ◦
}
⊂ Alb

◦

is closed and quasi-algebraic. Recall from [NW14, Prop. 5.3.13] that its maximal connected

subgroup � ⊂ St
Alb
◦ (ℵ◦) is then a semitorus.

Observation 7.8 (Properness of � as a subgroup of Alb
◦
). By construction, we have

0
Alb
◦ = alb

◦ (Ĝ) ∈ img alb
◦ ⊆ ℵ◦.

It follows that St
Alb
◦ (ℵ◦) ⊆ ℵ◦. �is equips us with inclusions

� ⊆ St
Alb
◦ (ℵ◦) ⊆ ℵ◦ ( Alb

◦

and shows that � ( Alb
◦

is a proper subgroup. �e quotient group Alb
◦/� is not trivial.

We have seen in Observation 5.9 on page 19 that the morphism alb
◦

is equivariant with

respect to the �-action on Alb
◦
. �e action will then stabilize the subset ℵ◦. As the next

lemma shows, it will also stabilize St
Alb
◦ (ℵ◦) and � , at least up to translation.

Lemma 7.9 (Relation between� and � ). In Se�ing 7.6, if 6 ∈ � is any element, then 6 · � is
a translate of � . In particular, the�-action of Alb

◦ maps � -orbits to � -orbits, for the additive
action of � on Alb

◦.

Proof. Since all connected components of the group St
Alb
◦ (ℵ◦) are translates of the iden-

tity component, it su�ces to show that 6 · St
Alb
◦ (ℵ◦) is a translate of St

Alb
◦ (ℵ◦). To this

end, recall from Proposition 3.18 on page 7 that we may write6 : Alb
◦ → Alb

◦
in the form

6 : 0 ↦→ 5 ◦ (0) + 6(0
Alb
◦ ), where 5 ◦ : Alb

◦ → Alb
◦

is a group morphism. In particular, we

�nd that

(7.9.1) ℵ◦ = 6(ℵ◦) = 5 ◦ (ℵ◦) + 6(0
Alb
◦ ) ⇔ 5 ◦ (ℵ◦) = ℵ◦ − 6(0

Alb
◦ ).

�is gives

6
(
St

Alb
◦ (ℵ◦)

)
= 5 ◦

(
St

Alb
◦ (ℵ◦)

)
+ 6(0

Alb
◦ )

= St
Alb
◦
(
5 ◦ (ℵ◦)

)
+ 6(0

Alb
◦ ) 5 ◦ a group morphism

= St
Alb
◦
(
ℵ◦ − 6(0

Alb
◦ )

)
+ 6(0

Alb
◦ ) (7.9.1)

= St
Alb
◦ (ℵ◦) + 6(0

Alb
◦ ) Defn. of St

Alb
◦ (•) �

Construction 7.10. Maintaining Se�ing 7.6, we construct a non-trivial semitoric variety

�◦ ⊂ � with �-action and a diagram

-̂ ◦ Alb
◦ �◦

- ◦ Alb
◦/
� �◦

/
�

alb
◦

W◦ , quotient by�

1◦

V◦ , quotient by �

W
Alb
◦ , quotient by� W�◦ , quotient by�

X◦ Y◦

where (among other things) the following holds.

• All horizontal arrows are quasi-algebraic,

• all arrows in the top row are �-equivariant, and

• all arrows in the bo�om row are C-morphisms for the C-pairs

(- ◦, �◦),
(
Alb
◦, 0

) /
�, and

(
�◦, 0

) /
�.
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�e le� rectangle of the diagram is given by Proposition 5.13 on page 20. As for the

right rectangle, take �◦ as the quotient Alb
◦/� . Recall from [NW14, �m. 5.3.13] that �◦

is a semitorus, and that there exists a semitoric compacti�cation �◦ ⊆ � that renders

the quotient morphism V◦ quasi-algebraic. Lemma 7.9 gives a natural action � 	 �◦

that makes the morphism V◦ equivariant, and Corollary 3.21 on page 8 allows assuming

without loss of generality that the � action extends from �◦ to �. �e right rectangle of

the diagram is now given by the universal property of �-quotients, [KR24a, Prop. 12.7].

Finish the construction by recalling from [KR24a, Prop. 12.7] that Y◦ is a morphism of

C-pairs, from

(
Alb
◦, 0

)
/� to

(
�◦, 0

)
/� , as required.

To conclude Construction 7.10, consider the topological closure / := img V◦, which is

an analytic subset of �. As before, write / ◦ := / ∩ �◦ and set ? := dim/ .

�e following observations summarize the main properties of the construction.

Observation 7.11. By construction, / ◦ is not invariant under the action of any proper

semitorus in �◦. In this se�ing, recall from Kawamata’s proof of the Bloch conjecture,

[Kaw80], or more speci�cally from [Kob98, Cor. 3.8.27] that there exist�◦-invariant di�er-

entials g◦
0
, . . . , g◦? ∈ � 0

(
�◦, Ω

?

�◦
)

such that the restrictions g◦• |/ ◦reg
are linearly independent

top-di�erentials on / ◦
reg

, and therefore de�ne a (? + 1)-dimensional linear subspace

+ :=
〈
g◦

0
|/ ◦

reg
, . . . , g◦? |/ ◦reg

〉
⊆ � 0

(
/ ◦

reg
,Ω

?

/ ◦
reg

)
= � 0

(
/ ◦

reg
, l/ ◦

reg

)
.

�e associated meromorphic map i+ : / ◦
reg

d P? is generically �nite. Recall from

Item (3.15.2) of Proposition 3.15 on page 6 that the �◦-invariant di�erentials g◦• ∈
� 0

(
�◦, Ω

?

�◦
)

automatically extend to di�erentials with logarithmic poles at in�nity, say

g• ∈ � 0
(
�, Ω

?

�
(logΔ)

)
.

Observation 7.12. We have observed in 7.8 that � ⊆ ℵ◦. �ere is more that we can say.

�e assumption ℵ◦ ( Alb
◦

and Item (5.2.2) of De�nition 5.2 imply that ℵ◦ is not itself a

semitorus. In particular, we �nd that � ( ℵ◦ is a proper subset and that the variety / ◦ is

therefore positive-dimensional. �e inclusion � ⊂ ℵ◦ also implies that the morphisms

V◦ : Alb
◦ � �◦ and V◦ |ℵ◦ : ℵ◦ → / ◦

are�-equivariant �bre bundles, both with typical �bre � . �e analytic variety / ◦ is there-

fore a proper subset, / ◦ ( �◦.

7.2. Proof of �eorem 7.1. We prove �eorem 7.1 in the remainder of the present Sec-

tion 7 and maintain Se�ing 5.1 throughout. For simplicity of notation, we prove the

contrapositive: assuming that the Albanese morphism alb(-, �,W)◦ is not dominant, we

show that the C-pair (-, �) admits a Bogomolov sheaf and is hence not special.

�e proof follows classic arguments, with some additional complications because of

our use of adapted di�erentials and because of the singularities of the varieties involved.

Step 1: Simpli�cation. Recall Lemma 5.8: Non-dominance of alb(-, �,W)◦ is preserved

when we replace W by any cover that factors via W . We can therefore pass to the Galois

closure and assume that we are in Se�ing 7.6. We use the notation introduced in Con-

struction 7.10 and Observations 7.11–7.12 in the remainder of the proof.

Step 2: A rank-one sheaf in Ω
[? ]
(-,�,W )

��
-̂ ◦ . Consider the composed morphism of �-

sheaves

(7.13.1) (1◦)∗ Ω?
�◦ Ω

?

-̂ ◦
Ω
[? ]
-̂ ◦
,

d1◦

and let L ◦ ⊆ Ω
[? ]
-̂ ◦

denote the image sheaf, which is then a torsion free �-subsheaf of

Ω
[? ]
-̂

. We summarize its main properties.
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Observation 7.14. �e sheaf L ◦
is of rank one because 1◦ factors via the ?-dimensional

space / ◦. � (Observation 7.14)

Claim 7.15. �e sheaf L ◦
is contained in the subsheaf Ω

[? ]
(-,�,W )

��
-̂ ◦ ⊆ Ω

[? ]
-̂ ◦

.

Proof of Claim 7.15. �e morphism 1◦ factors via alb
◦
. Since pull-back of Kähler di�eren-

tials is functorial, d1◦ factors via d alb
◦

and the image of the composed morphism (7.13.1)

is contained in the image of the composition

(alb
◦)∗ Ω?

Alb
◦ Ω

?

-̂ ◦
Ω
[? ]
-̂ ◦
.

d alb
◦

But then Remark 5.3 gives the claim. � (Claim 7.15)

Step 3: A rank-one sheaf in Ω
[? ]
(-,�,W ) . We extend the sheaf L ◦

from -̂ ◦ to a rank-

one, re�exive sheaf that is de�ned on all of -̂ . As in Section 4, the reader coming from

algebraic geometry might �nd the proof surprisingly complicated: in the analytic se�ing,

it is typically not possible to extend coherent sheaves across codimension-two subsets.

Claim 7.16. �ere exists a rank-one, re�exive�-subsheaf L ⊆ Ω
[? ]
(-,�,W ) whose restriction

to -̂ ◦ contains L ◦
. �ere are sections f0, . . . , f? ∈ � 0

(
-̂ , L

)
whose associated linear

system de�nes a dominant meromorphic map -̂ d P? .

Proof of Claim 7.16. �e morphism 1◦ : -̂ ◦ → �◦ is quasi-algebraic and therefore extends

to a �-equivariant meromorphic map 1 : -̂ d �. Choose a �-equivariant log-resolution

(-̃ , �̃) of (-̂ , �̂) and the meromorphic map 1 as follows:

-̃

-̂ �.

d , resolution

1̃

1

We can then consider �-subsheaves

img

(
d 1̃ : Ω

?

�
(logΔ) → Ω

?

-̃
(log �̃)

)
⊆ Ω

?

-̃
(log �̃)

and

L ′
:= d∗ img

(
d 1̃

)
⊆ d∗Ω?

-̃
(log �̃) ⊆ Ω

[? ]
-̂
(log �̂)

�e construction guarantees that the sheaves L ′
and L ◦

agree over the open set -̂ ◦; in

particular, we �nd that L ′
is of rank one. Together with Claim 7.15, the construction

shows that L ′
is contained in Ω

[? ]
(-,�,W ) . Finally, let L be the saturation of L ′

in Ω
[? ]
(-,�,W ) .

�e sheaf L is then automatically re�exive. In summary, we obtain inclusions of �-

sheaves as follows,

L ′ ⊆ L ⊆ Ω
[? ]
(-,�,W ) ⊆ Ω

[? ]
-̂
(log �̂).

In order to construct the sections f•, recall from Observation 7.11 that the di�erentials

g• have logarithmic poles at in�nity, and then so do their pull-backs. To be more precise,

consider the re�exive di�erentials

f• ∈ � 0
(
-̂ , Ω

[? ]
-̂
(log �̂)

)
that generically agree with the pull-back of g•, and therefore restrict to sections

f• |-̂ ◦ ∈ �
0
(
-̂ ◦, L ◦) ⊂ � 0

(
-̂ ◦, Ω

[? ]
(-,�,W )

)
.

But that already implies that the f• are sections of L . � (Claim 7.16)
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Step 4: Conclusion. Given any number 8 ∈ N, recall from [KR24a, Obs. 4.12] that re-

�exive symmetric multiplication of adapted re�exive tensors yields inclusions

L [⊗8 ] ⊆ Sym
[8 ]
C Ω

[? ]
(-,�,W ) .

We consider the �-invariant push-forward sheaves,

L8 :=

(
W∗L

[⊗8 ]
)�
⊆

(
W∗ Sym

[8 ]
C Ω

[? ]
(-,�,W )

)�
[KR24a, Cor. 4.20]

= Sym
[8 ]
C Ω

[? ]
(-,�,Id- ) .

Recall from [GKKP11, Lem. A.4] that the sheaves L8 are re�exive. By construction, their

rank is one. We will show in this step that ^C (L1) ≥ ? .

Observation 7.17. If 8 ∈ N is any number, then L8 equals the 8th C-product sheaf

L8 = Sym
[8 ]
C L1,

as introduced in [KR24a, Def. 6.5] �

Recalling the de�nition of the C-Kodaira-Iitaka dimension from [KR24a, Sect. 6.2],

it remains to �nd one sheaf L8 with non-empty linear system whose associated mero-

morphic map has an image of dimension ≥ ? . For this, consider the linear systems

,8 := � 0

(
-̂ ,L [⊗8 ]

)�
⊆ � 0

(
-̂ ,L [⊗8 ]

)
.

If 8 is su�ciently large and divisible, then,8 is positive-dimensional and the associated

meromorphic map i, : -̂ d P• has an image of dimension

dim imgi, ≥ dim img(i+ ◦ 1◦) ≥ ?.

By construction, the meromorphic mapi, is constant on�-orbits and the induced mero-

morphic mapi : - d P• equals the meromorphic map associated with the re�exive sheaf

L8 . We have seen above that this �nishes the proof of �eorem 7.1. �

Part III. Applications

8. C-semitoric pairs

We argue that quotients of semitoric varieties should be seen as C-analogoues of the

tori and semitoric varieties that appear in the classic Albanese construction. Before stat-

ing our main result on the existence of an Albanese for a C-pair, we de�ne and discuss

the relevant notion precisely.

De�nition 8.1 (C-semitoric pairs). A C-semitoric pair is a C-pair (-, �) such that there
exists a semitoric variety �◦ ⊂ �, a �nite group� acting on (�,Δ�), and a C-isomorphism
of the form

(8.1.1) (-, �) �
(
�,Δ�

) /
�

An isomorphism as in (8.1.1) is called a presentation of the C-semitoric pair.

�e choice of a presentation is not part of the data that de�nes a C-semitoric pair.

Remark 8.2. If a C-pair (-, �) is C-semitoric, then it is (-, �) is locally uniformizable,

[KR24a, Def. 2.32] and - is compact Kähler, cf. [NW14, Prop. 5.3.5].

Example 8.3. �e C-pair(
P1, 1

2
· {0} + 1

2
· {1} + 1

2
· {2} + 1

2
· {∞}

)
is C-semitoric.
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It is perhaps not obvious from the outset that “C-semitoric pair” is a meaningful no-

tion. In particular, it is probably not clear that morphisms between the open parts of

C-semitoric pairs have anything to do with the groups that de�ne the semitoric struc-

tures of domain and target. Here, we would like to make the point that quasi-algebraic
C-morphisms of C-semitoric pairs do indeed come from group morphisms, and there-

fore respect the structure in a meaningful way. We see this as a strong indication that

C-semitoric pairs are relevant objects to consider.

�eorem 8.4 (Morphisms between C-semitoric pairs). Let (-1, �-1
) and (-2, �-2

) be two
C-semitoric pairs with presentations

(-1, �-1
) �

(
�1,Δ�1

) /
�1

and (-2, �-2
) �

(
�2,Δ�2

) /
�2.

Given any quasi-algebraic C-morphismi◦ : (- ◦
1
, �◦

-1

) → (- ◦
2
, �◦

-2

), there exists a semitoric
variety �◦ ⊂ � and a commutative diagram of the following form,

(8.4.1)

�◦ �◦
1

- ◦
1

�◦
2

�◦
2

- ◦
2
.

k ◦ , quasi-algebraic

étale cover
Φ◦ , quasi-algebraic

@◦
1
, quotient

i◦

@◦
2
, quotient

Remark 8.5 (�asi-algebraic maps between semitori). Recall Proposition 3.18: if we

choose points 0�◦ ∈ �◦ and 0�◦
2

∈ �◦
2

to equip �◦ and �◦
2

with Lie group structures,

then Φ◦ can be wri�en as a Lie group morphism composed with a translation.

As an immediate corollary to Remark 8.5, we note that quasi-algebraic morphisms of

C-semitoric pairs enjoy many of the special properties known for Lie group morphisms.

�e following corollary lists a few of them.

Corollary 8.6 (Description of morphisms between C-semitoric pairs). �e following holds
in the se�ing of �eorem 8.4.

(8.6.1) �e �bres of i◦ are of pure dimension.
(8.6.2) Any two non-empty �bres of i◦ are of the same dimension.
(8.6.3) If i◦ is quasi-�nite, then it is �nite. �

8.1. Proof of �eorem 8.4. We maintain notation and assumptions of �eorem 8.4 in

the present section. To begin, choose a component

�◦ ⊆ normalisation of �◦
1
×- ◦

2

�◦
2
.

�e natural morphism V◦ : �◦ � �◦
1

is �nite. By the analytic version of “Zariski’s main

theorem in the form of Grothendieck”, [DG94, �m. 3.4], there exists a unique normal

compacti�cation�◦ ⊂ � where V◦ extends to a �nite morphism V : � → �1. An element-

ary computation shows that the natural morphism [◦ : �◦ → �◦
2

is quasi-algebraic for

this compacti�cation, so that we obtain the following diagram,

(8.7.1)

� �◦ �◦
2

�2

�1 �◦
1

�◦
2

�2

-1 - ◦
1

- ◦
2

-2.

V , �nite

[

[◦

V◦ , �nite

quotient @◦
1
, quotient @◦

2
, quotient quotient

i

i◦
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Step 1: Analysis of V . �e morphism V is a cover for the logarithmic C-pair (�1,Δ�1
).

Recall from [KR24a, Obs. 3.16] that the associated C-cotangent sheaf equals

(8.7.2) Ω [1](�1,Δ�
1
,V) = V

∗Ω1

�1

(
logΔ�1

)
.

In particular, we �nd that the composed pull-back morphism

d V : � 0
(
�1, Ω

1

�1

(logΔ�1
)
)
→ � 0

(
�, Ω [1]

�
(logΔ� )

)
takes its image in � 0

(
�, Ω [1](�1,Δ�

1
,V)

)
. �e universal property of the adapted Albanese for

the adapted cover V , as speci�ed in Item (5.2.2) of De�nition 5.2, will therefore apply to

give a factorization

�◦ Alb(�1,Δ�1
, V)◦ �◦

1
,

V◦

alb(�1,Δ�
1
,V)◦ k ◦

where the morphisms V◦ and alb(. . .)◦ are quasi-algebraic. By Lemma 2.4, then so is the

morphism k ◦. We claim that the surjection k ◦ is also �nite, and hence by Corollary 3.19

an étale cover. Equivalently, we claim that Alb(�1,Δ�1
, V)◦ ≤ dim�◦

1
. But

dim Alb(�1,Δ�1
, V)◦ ≤ ℎ0

(
�, Ω [1](�1,Δ�

1
,V)

)
Proposition 5.5

= ℎ0
(
�, V∗Ω1

�1

(logΔ�1
)
)

(8.7.2)

= ℎ0
(
�, O

⊕ dim�◦
1

�

)
= dim�◦

1
Proposition 3.15.

Step 2: Analysis of [. Recall [KR24a, Obs. 12.10], which implies that the morphisms @◦•
of Diagram (8.7.1) are adapted for (- ◦• , �◦•) and that the C-cotangent sheaves equal

(8.7.3) Ω [1](- ◦• ,�◦•,@◦•)
= Ω1

�◦•
.

Along similar lines, [KR24a, Obs. 4.15] implies that the morphism @◦
1
◦ V◦ is adapted for

the pair (- ◦
1
, �◦

1
), and that

(8.7.4) Ω [1](- ◦
1
,�◦

1
,@◦

1
◦V◦) = (V

◦) [∗]Ω [1](- ◦
1
,�◦

1
,@◦

1
)

(8.7.3)

= (V◦)∗Ω1

�◦
1

.

�e assumption that i◦ is a C-morphism implies [◦ admits pull-back of adapted re�exive

di�erentials,

3[◦ : ([◦)∗Ω [1](- ◦
2
,�◦

2
,@◦

2
) → Ω [1](- ◦

1
,�◦

1
,@◦

1
◦V◦) ,

where

Ω [1](- ◦
2
,�◦

2
,@◦

2
)

(8.7.3)

= Ω1

�◦
2

and Ω [1](- ◦
1
,�◦

1
,@◦

1
◦V◦)

(8.7.4)

= (V◦)∗Ω1

�◦
1

.

In particular, we �nd that the composed pull-back morphism

d[ : � 0
(
�2, Ω

1

�2

(logΔ�2
)
)
→ � 0

(
�, Ω [1]

�
(logΔ� )

)
takes its image in

� 0
(
�, Ω [1]

�
(logΔ� )

)
= � 0

(
�, Ω [1](�1,Δ�

1
,V)

)
.

As above, the universal property of the adapted Albanese will therefore apply to give a

factorization

�◦ Alb(�1,Δ�1
, V)◦ �◦

2
,

[◦

alb(�1,Δ�
1
,V)◦ Φ◦

where Φ◦ is quasi-algebraic.
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Step 3: Summary. We have seen in Steps 1 and 2 that V◦ and [◦ both factor via

alb(�1,Δ�1
, V)◦. �e following diagram summarizes the situation,

�◦ Alb(�1,Δ�1
, V)◦ �◦

1
- ◦

1

�◦
2

�◦
2

- ◦
2
.

alb(�1,Δ�
1
,V)◦ k ◦ , étale

Φ◦ , quasi-algebraic

@◦
1
, quotient

i◦

@◦
2
, quotient

�e proof of �eorem 8.4 is then �nished once we set �◦ := Alb(�1,Δ�1
, V)◦. �

9. The Albanese of a C-pair with bounded irregularity

9.1. Existence of the Albanese in case of bounded irregularity. With all the neces-

sary preparation at hand, the main result on the existence of an Albanese of a C-pair is

now formulated as follows.

De�nition 9.1 (�e Albanese of a C-pair). Let (-, �) be a C-pair where - is compact.
An Albanese of (-, �) is a C-semitoric pair

(
Alb(-, �),ΔAlb(-,�)

)
and a quasi-algebraic

C-morphism
alb(-, �)◦ : (- ◦, �◦) →

(
Alb
◦ (-, �),Δ◦

Alb(-,�)
)

such that the following holds: If ((,Δ( ), B ∈ (◦ is any other C-semitoric pair and if B◦ :

(- ◦, �◦) → ((◦,Δ◦
(
) is any quasi-algebraic C-morphism, then B◦ factors uniquely as

(- ◦, �◦)
(
Alb
◦
G (-, �),Δ◦Alb(-,�)

)
((◦,Δ◦

(
).

alb(-,�)◦

B◦

∃!2◦ , quasi-algebraic

�eorem 9.2 (�e Albanese of a C-pair with bounded irregularity). Let (-, �) be a C-pair
where - is compact Kähler. If @+

Alb
(-, �) < ∞, then an Albanese of (-, �) exists.

�eorem 9.2 will be shown in Section 9.3 below.

Remark 9.3 (Special pairs). Recall from Remark 7.4 on page 24 that the assumption

@+
Alb
(-, �) < ∞ is always satis�ed if the C-pair (-, �) is special.

Remark 9.4 (Uniqueness). �e universal property implies that Alb(-, �)◦ is unique up

to unique isomorphism and that Alb(-, �) is bimeromorphically unique. �e universal

property also implies that dim Alb(-, �) = @+
Alb
(-, �).

As before, we abuse notation and refer to any Albanese of (-, �) as “the Albanese”.

9.2. Non-existence of the Albanese in case of unbounded irregularity. Before

proving of �eorem 9.2, we remark that the assumption @+
Alb
(-, �) < ∞ is necessary

in the strongest possible sense.

Proposition 9.5 (Non-existence of the Albanese in case of unbounded irregularity). Let
(-, �) be a C-pair where - is compact Kähler. If @+

Alb
(-, �) = ∞, then an Albanese of

(-, �) cannot possibly exist.

Proof. We argue by contradiction and assume that there exists a C-semitoric pair

(
�,Δ�

)
and a quasi-algebraic C-morphism

0◦ : (- ◦, �◦) →
(
�◦,Δ◦�)

that satis�es the universal property of �eorem 9.2. By assumption, there exists a cover

W : -̂ � - such that @Alb (-, �,W) > dim�◦. Lemma 5.8 on page 18 allows assuming
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without loss of generality that W is Galois with group � . Proposition 5.13 on page 20

yields a diagram

(9.5.1)

-̂ ◦ Alb
◦ (-, �,W)

- ◦ Alb
◦ (-, �,W)

/
�

alb
◦ (-,�,W )

W quotient

B◦

where B◦ is a quasi-algebraic morphism of C-pairs,

B◦ : (- ◦, �◦) →
(
Alb
◦ (-, �,W), 0

) /
�.

By assumption, the C-morphism B◦ factors via 0◦, and equips us with a quasi-algebraic

morphism of C-pairs,

2◦ : (�◦,Δ◦�) →
(
Alb
◦ (-, �,W), 0

) /
�.

Observing that domains and target of the C-morphism 2◦ are C-semitoric pairs, �eo-

rem 8.4 yields a semitoric variety ( q�,Δ
q�
) and an extension of Diagram (9.5.1) as follows,

q- ◦ q�◦ Alb
◦ (-, �,W)

-̂ ◦ Alb
◦ (-, �,W)

- ◦ �◦ Alb
◦ (-, �,W)

/
�

�nite

Φ◦ , quasi-algebraic

quotient ◦ étale

alb
◦ (-,�,W )

W quotient

0◦

B◦

2◦

where Φ◦ is quasi-algebraic. Since

dim q�◦ = dim�◦ < dim Alb(-, �,W)
by construction, it is clear that Φ◦ cannot be surjective. It follows that the image of the Al-

banese morphism alb
◦ (-, �,W) is contained in imgΦ◦ ( Alb

◦ (-, �,W), contradicting the

assertion of Proposition 6.5 that the image generates Alb(-, �,W)◦ as an Abelian group,

once appropriate Lie group structures are chosen. �

9.3. Proof of �eorem 9.2. We maintain notation and assumptions of �eorem 9.2. �e

proof is somewhat long, as it involves the discussion of a fair number of diagrams and

references to almost all results obtained so far. For the reader’s convenience, we present

the argument in four relatively independent steps.

Step 1: Choices and constructions. We consider the set of Galois covers,

" :=
{
X : -̂X � - a Galois cover of (-, �)

}
.

For every X ∈ " , write�X for the associated Galois group, write -̂ ◦
X

:= X−1 (- ◦) ⊆ -̂X and

denote the restriction of X by X◦ : -̂ ◦
X
→ - ◦.

Choice 9.6 (Comparison morphism). For every pair of two covers X1, X2 ∈ " where X1

factors via X2,

(9.6.1) -̂X1
-̂X2

-,∃ X12

X1

X2
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choose one morphism X12 : -̂X1
� -̂X2

that makes (9.6.1) commute.

Choice 9.7 (Albanese varieties for the covers). For every X ∈ " , use Proposition 5.5 and

Corollary 3.21 to choose an Albanese

(
�X ,Δ�X

)
of the cover X , where the �X -action ex-

tends from �◦
X

to �X . Denote the associated quasi-algebraic Albanese morphism by

0̂◦
X

: -̂ ◦
X
→ �◦

X
.

Notation 9.8 (C-semitoric pairs). With the choices above, consider the C-semitoric pairs

(�X ,Δ�X ) := (�X ,Δ�X )
/
�X .

Let 0◦
X

: (- ◦, �◦) → (�◦
X
,Δ◦

�X
) be the quasi-algebraic C-morphisms introduced in Propos-

ition 5.13.

In the sequel, we will need to compare the C-semitoric pairs induced by two covers

that factor one another. �e following reminder summarizes what we already know.

Reminder 9.9 (Comparing covers). Given two covers X1, X2 ∈ " where X1 factors via X2,

Lemma 5.14 equips us with a commutative diagram

(9.9.1)

-̂ ◦
X1

�◦
X1

-̂ ◦
X2

�◦
X2

- ◦ �◦
X1

�◦
X2

,

X12

X◦
1

0̂◦
X

1

@̂ ◦
X

1
X

2

, quasi-algebraic

@X
1
, �nite quotient

0̂◦
X

2

X◦
2

@X
2
, �nite quotient

0◦
X

1

0◦
X

2

@◦
X

1
X

2

where all morphisms are quasi-algebraic and all morphisms in the bo�om row are morph-

isms of C-pairs, between (- ◦, �◦), (�◦
X1

,Δ◦
�X

1

) and (�◦
X2

,Δ◦
�X

2

).

Choice 9.10 (Albanese of (-, �)). Consider the numbers

=X := #components in the typical non-empty �bre of 0◦
X

: - ◦ → �◦
X
,

=min := min

{
=X : X ∈ " and dim�X = @+

Alb
(-, �)

}
and choose one particular cover W ∈ " such that dim�W = @+

Alb
(-, �) and =W = =min.

Once the choice is made, consider the associated C-semitoric pair(
Alb(-, �),ΔAlb(-,�)

)
:= (�W ,Δ�W )

with the associated morphism alb(-, �)◦ := 0◦W . We will show that this is an Albanese of

(-, �).

Step 2: First properties of the construction. We need to show that our choice of

an Albanese does indeed satisfy the universal properties required by De�nition 9.1. To

prepare for the proof, we study covers X ∈ " that factor via W . �e following claims show

that the C-morphism @◦
XW

: �◦
X
→ �◦W of Reminder 9.9 is an isomorphism of C-pairs. �e

proof makes extensive use of the notation introduced in Reminder 9.9. �e reader might

wish to write down Diagram (9.9.1) in our particular situation, where X1 is replaced by X

and X2 is replaced by W .

Claim 9.11. Assume that a cover X ∈ " factors via W . �en, the morphism @◦
XW

of Re-

minder 9.9 is �nite as a morphism of analytic varieties.
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Proof of Claim 9.11. �e choices made in Step 2 guarantee that the quasi-algebraic morph-

ism @̂ ◦
XW

is surjective between semitori of the same dimension. It follows from Corol-

lary 3.19 that @̂ ◦
XW

is �nite. As the induced morphism between (�nite) Galois quotients,

@◦
XW

is then likewise �nite. � (Claim 9.11)

Claim 9.12. Assume that a cover X ∈ " factors via W . �en, the morphism @◦
XW

of Re-

minder 9.9 is biholomorphic as a morphism of analytic varieties.

Proof of Claim 9.12. If I ∈ img0◦W ⊆ �◦W is general, observe that the following two condi-

tions hold.

�e morphism @◦
XW

is étale over I: We have seen in Proposition 5.13 that I is not

contained in the branch locus of the �nite quotient map @W . In other words, @W is

étale over I. Corollary 3.19 guarantees that @̂ ◦
XW

is étale everywhere, so that

@W ◦ @̂ ◦XW = @◦
XW
◦ @X

is étale over I. But then @◦
XW

is étale over I.

�e set-theoretic �bre
(
@◦
XW

)−1 (I) ⊂ �◦
X

is connected: �is is a direct consequence

of Choice 9.10.

Given that the number of �bre components is constant in �nite, étale morphisms, we

�nd that the �nite morphism @◦
XW

has connected �bres. It is hence a one-sheeted analytic

covering in the sense of [Rem94, Sect. 14.2]. Together with normality, [Rem94, Prop. 14.7]

applies to show that it is indeed biholomorphic. � (Claim 9.12)

Claim 9.13. Assume that a cover X ∈ " factors via W . �en, the morphism @◦
XW

of Re-

minder 9.9 is isomorphic as a morphism of C-pairs.

Proof. Using the biholomorphic map @◦
XW

to identify the analytic varieties �◦
X

and �◦W , we

need to show that the boundary divisors induced by the quotient morphism @X and @W
agree. �e construction of categorical C-pair quotients, [KR24a, Cons. 12.4], tells us what

the boundaries are: if �X is any prime divisor in �◦
X

and if we choose prime divisors in

the preimages spaces,

�W =
( (
@◦
XW

)−1
)∗
�X prime divisor in �◦W

�̂W ≤
(
@W

)∗
�W prime divisor in �◦W

�̂X ≤
(
@̂◦
XW

)∗
�W prime divisor in �◦

X
,

then

multC,�X Δ
◦
�X

= mult
�̂X

(
@X

)∗
�X and multC,�W Δ

◦
�W

= mult
�̂W

(
@X

)∗
�W .

But these two numbers agree, given that @◦
XW

and @̂◦
XW

are étale. � (Claim 9.13)

Step 4: Universal property. We will now show that the constructions of the previous

steps satisfy the universal property spelled out in De�nition 9.1. We �x the se�ing for

the remainder of the present proof.

Se�ing 9.14 (Universal property). Let (�,Δ�) be a C-semitoric pair and assume that a

quasi-algebraic C-morphism 0◦ : (- ◦, �◦) → (�◦,Δ◦
�
) is given. Let

(�,Δ�) � (�,Δ�)
/
�

be a presentation of the C-semitoric pair, with quotient morphism @ : � � �.
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We need to show that the C-morphism 0◦ factors via 0◦W uniquely. In other words, we

need to �nd a quasi-algebraic C-morphism 2◦ ��ing into a commutative diagram

(9.15.1) (- ◦, �◦)
(
�◦W ,Δ

◦
�W

)
(�◦,Δ◦

�
)

0◦W

0◦

∃!2◦

and prove that 2◦ is unique with this property.

Step 4a: Existence of a factorization. Maintaining Se�ing 9.14, we show that there

exists one quasi-algebraic C-morphism 2◦ :

(
�◦W ,Δ

◦
�W

)
→ (�◦,Δ◦

�
) that makes Dia-

gram (9.15.1) commute.

Construction 9.16 (Fibre product). Choose a component of the normalized �bre product

-̂d ⊆ normalization of � ×� - .
Denote the projection morphisms and their restrictions as follows,

(9.16.1)

-̂d -̂ ◦d �◦ �

- - ◦ �◦ �.

d

⊇

d◦

0̂ ◦

@◦

⊆

@, quotient

⊇
0◦

⊆

Observation 9.17 (Group actions in (9.16.1)). �e group� acts on the �bre product�×�-
and on its normalization. �e stabilizer of the component -̂d ,

� := Stab

(
-̂d

)
⊆ �,

acts on -̂d , and d : -̂d � - is the quotient map of this action. �e projection map d is

therefore Galois. In other words, d ∈ " . �e Galois group is the quotient of � by the

ine�ectivity,

�d = �
/

ker

(
� → Aut -̂d

)
.

�e projection map 0̂ ◦ is equivariant with respect to the action of � on -̂ ◦d and on �◦.

Observation 9.18 (Factorization via the Albanese of the cover). We have seen in [KR24a,

Obs. 12.10] that the quotient morphism @◦ is an adapted cover for the pair (�◦,Δ◦
�
) and

that the adapted di�erentials are described as

Ω [1](�◦,Δ◦
�
,@◦) = Ω1

(�◦,Δ◦
�
,@◦) = Ω1

�◦ .

�e assumption that 1◦ is a C-morphism guarantees by de�nition that Diagram (9.16.1)

admits pull-back of adapted re�exive di�erentials. In other words: �e composed pull-

back morphism

(0̂◦)∗Ω1

�◦ = (0̂◦)∗Ω1

(�◦,�◦
(
,@◦)

d 0̂◦−−−→ Ω1

-̂ ◦d
→ Ω [1]

-̂ ◦d

takes its image in the subsheaf Ω [1](- ◦,�◦,d) ⊆ Ω [1]
-̂ ◦d

. �e universal property of the Albanese

for the cover d , Item (5.2.2) of De�nition 5.2, will then guarantee that 0̂◦ factors as

(9.18.1) -̂ ◦d �◦d �◦,

0̂ ◦

0̂ ◦d B̂ ◦

where B̂◦ is a quasi-algebraic morphism of semitori. �ere is more that we can say: �d is

the Galois group of the covering morphism d and therefore acts on �d , the Albanese of

the cover d . �e group �d is a quotient of � , and the universal property of the Albanese

�d guarantees that the map 0̂ ◦ is equivariant with respect to the � -action.
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Claim 9.19 (Extension of (9.16.1) and (9.18.1)). �ere exists a commutative diagram of

morphisms between analytic varieties,

(9.19.1)

-̂ ◦d �◦d �◦ �◦

- ◦ �◦d �◦
/
� �◦

/
�,

d◦

0̂ ◦d

0̂ ◦

B̂ ◦

@d , quot. by�d
@′d , quot. by�d @◦ , quot. by�

0◦d

0◦

B◦ V◦

where all morphisms in the bo�om row are quasi-algebraic C-morphisms between

(- ◦, �◦) and the C-pairs

(�◦d ,Δ◦�d ) = (�
◦
d , 0)

/
�d = (�◦d , 0)

/
�, (�◦, 0)

/
� and (�◦,Δ◦�) = (�

◦, 0)
/
�.

Proof of Claim 9.19. Given that �◦ is a semitorus hence smooth, recall from [KR24a,

Ex. 8.6] that the � -equivariant morphism B̂ ◦ is a C-morphism between the trivial pairs

(�◦d , 0) and (�◦, 0). Let B◦ be induced by the C-morphism between the quotient pairs

(�◦d ,Δ◦�d ) = (�
◦
d , 0)

/
� and (�◦, 0)

/
�,

as discussed in [KR24a, Prop. 12.7]. �is morphism makes the middle square in (9.19.1)

commute.

Next, we need to de�ne the morphism V◦. For that, review the de�nition of categorical

quotients of C-pairs, [KR24a, Def. 12.3]. �e de�nition guarantees on the one hand that

@′d and @◦ are C-morphisms between the C-pairs

(�◦, 0), (�◦, 0)
/
� and (�◦, 0)

/
�.

Given that @◦ is constant on the �bres of @′d , the de�nition also says that @◦ factors via @′d ,

as required. �e induced C-morphism V◦ makes the right square in (9.19.1) commute.

It remains to show that 0◦ = V◦ ◦ B◦ ◦ 0◦d . �at, however, follows from the equality

@◦ ◦ 0̂ ◦ = 0◦ ◦ d◦ given by (9.16.1), using that d◦ is surjective. � (Claim 9.19)

Assumption w.l.o.g. 9.20 (Factorization of W ). �e C-pair

(
�◦W ,Δ

◦
�W
) and the morphism 0◦W

have been de�ned above using the cover W , but we have seen in Claim 9.13 that they can

equally be de�ned by any cover that factors via W . Replacing -̂W by the Galois closure of

a suitable normalized �bre product, we may therefore assume without loss of generality

that W factors via d ,

-̂W -̂d - .

W

d

With Assumption 9.20 in place, the existence of a factorization is now immediate. Re-

minder 9.9 decomposes the le� square in (9.19.1) as follows,

-̂ ◦W �◦W �◦d

- ◦ �◦W �◦d

W◦

0̂ ◦d

0̂ ◦W

@◦W

@̂ ◦Wd

@◦d

0◦W

0◦d

@◦
WX
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where all morphisms are quasi-algebraic and all morphisms in the bo�om row are morph-

isms of C-pairs, between (- ◦, �◦), (�◦W ,Δ◦�W ) and (�◦d ,Δ◦�d ). We can then set

2◦ := V◦ ◦ B◦ ◦ @◦
WX
.

A factorization is thus found.

Step 4b: Uniqueness of the factorization. Maintain Se�ing 9.14 and assume that there

are two quasi-algebraic C-morphisms that makes Diagram (9.15.1) commute,

(- ◦, �◦)
(
�◦W ,Δ

◦
�W

)
(�◦,Δ◦

�
).

0◦W

0◦

∃ 2◦
1
, 2◦

2

We need to show that the two morphisms are equal, 2◦
1
= 2◦

2
.

Construction 9.21 (Li�ing 2◦• to Lie group morphisms). �eorem 8.4 equips us with semi-

toric varieties �̂◦W,• ⊂ �̂W,•, quasi-algebraic isogenies 8◦• : �̂◦W,• � �◦W and quasi-algebraic

Lie group morphisms Φ◦• : �̂◦W,• → �◦ forming commutative diagrams as in (8.4.1),

�̂◦W,• �◦

�◦W �◦

�◦W �◦.

8◦• , quasi-algebraic and étale

Φ◦• , quasi-algebraic

@◦W , quotient @◦ , quotient

2◦•

Blowing up in a le�-invariant manner, we may assume without loss of generality that the

8◦• extend to morphisms 8• : �̂W,• � �W .

De�ne a semitoric variety �̂◦W ⊂ �̂W by choosing a suitable strong resolution of a com-

ponent of the �bre product �̂W,1 ×�W �̂W,2. �e natural maps

�̂◦W � �̂◦W,• � �◦W

are then quasi-algebraic and étale. Compose the projection maps �̂◦W → �̂◦W,• with Φ◦• to

obtain two quasi-algebraic morphisms between semitori, î◦• : �̂◦W → �◦, each making the

following diagram commute,

(9.21.1)

�̂◦W �◦

�◦W �◦

�◦W �◦.

8◦ , quasi-algebraic

étale

î◦• , quasi-algebraic

@◦W , quotient @◦ , quotient

2◦•

Construction 9.22 (Dominating W ). Continuing Construction 9.21, choose a component of

the normalized �bre product �̂W ×�W -̂W and let -̂X be the Galois closure of that component
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over - . We obtain a Galois cover X : -̂X � - and a commutative diagram of quasi-

algebraic morphisms as follows,

(9.22.1)

-̂ ◦
X

�̂◦W

-̂ ◦W �◦W

- ◦ �◦W .

X◦ , Galois cover

`◦

8◦ , quasi-algebraic

étale

W◦

0̂◦W

@◦W , quotient

0◦W

Observation 9.23 (Factorization via the Albanese of the cover). In analogy to Observa-

tion 9.18, recall from [KR24a, Obs. 12.10] that the quotient morphism @◦W is an adapted

cover for the pair (�◦W ,Δ◦�W ). Since 8◦ is étale, the adapted di�erentials are described as

Ω [1](�◦W ,Δ◦�W ,@
◦
W ◦8◦)

= Ω1

�̂◦W
.

Since 0◦W is a C-morphism, Diagram (9.22.1) admits pull-back of adapted re�exive di�er-

entials. �e composed pull-back morphism

(`◦)∗Ω1

�̂◦W
= (`◦)∗Ω1

(�◦W ,Δ◦�W ,@
◦
W ◦8◦)

d `◦

−−−→ Ω1

-̂ ◦
X

→ Ω [1]
-̂ ◦
X

therefore takes its image in the subsheaf Ω [1](- ◦,�◦,X◦) ⊆ Ω [1]
-̂ ◦
X

. �e universal property of

the Albanese for the cover X◦, Item (5.2.2) of De�nition 5.2, will then guarantee that 0̂◦

factors as follows,

(9.23.1) -̂ ◦d �◦
X

�̂◦W .

`◦

0̂◦
X

a◦ , quasi-algebraic

Summary 9.24. Combining (9.21.1), (9.22.1) and (9.23.1), the following two diagrams sum-

marize the constructions obtained so far,

-̂ ◦
X

�◦
X

�̂◦W �◦

-̂ ◦W �◦W �◦W �◦

- ◦ �◦W �◦W �◦.

X◦

0̂ ◦
X

`◦

@◦
XW

a◦ , quasi-algebraic

8◦ , quasi-algebraic

étale

î ◦• , quasi-algebraic

W◦

0̂ ◦W

@◦W @◦W @◦

0◦W

0◦

2◦•
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Se�ing 2̂ ◦• := î ◦• ◦ a◦, we are interested in the subdiagrams

(9.24.1)

-̂ ◦
X

�◦
X

�◦

- ◦ �◦W �◦.

X◦

0̂ ◦
X

@◦W ◦@◦XW

2̂ ◦• , quasi-algebraic

@◦

0◦W

0◦

2◦•

Claim 9.25 (Aligning the 2̂ ◦• ). Recalling that � is the Galois group of the morphism @,

there exists an element 6 ∈ � such that 2̂ ◦
1
◦ 0̂ ◦

X
= 6 ◦ 2̂ ◦

2
◦ 0̂ ◦

X
.

Proof of Claim 9.25. For every point of G ∈ -̂ ◦
X

, commutativity of (9.24.1) guarantees that

the image points (2̂ ◦• ◦ 0̂ ◦X ) (G) are contained in the same �bre of the Galois morphism @◦.
Accordingly, there exists an element 6G ∈ � such that

(9.25.1) 2̂ ◦
1
◦ 0̂ ◦

X
(G) = 6G ◦ 2̂ ◦2 ◦ 0̂ ◦X (G).

But since � is �nite, there exists one 6 ∈ � such that (9.25.1) holds for every G ∈ -̂ ◦
X

.

� (Claim 9.25)

To conclude, choose one Galois element 6 ∈ � as in Claim 9.25. Choose a point G ∈ -̂ ◦
X

and use

0�◦
X

:= 0̂ ◦
X
(G) and 0�◦ := 2̂ ◦

1
(0�◦

X
)

to equip �◦
X

and �◦ with Lie group structures. With these structures, Proposition 3.18

guarantees that

2̂ ◦
1

: �◦
X
→ �◦, 6 ◦ 2̂ ◦

2
: �◦

X
→ �◦, and 6 : �◦

X
→ �◦

X

are Lie group morphisms, so that

img 0̂ ◦
X
⊆ ker

(̂
21 − 6 ◦ 2̂2

)
⊆ �◦

X
.

Recalling from Proposition 5.5 that img 0̂ ◦
X

generates�◦
X

as a group, we �nd that 2̂1 = 6◦2̂2.

Commutativity of (9.21.1) and surjectivity of @◦
X

then show that 2◦
1
= 2◦

2
, as required to

�nish the proof of �eorem 9.2. �

10. Problems and open qestions

10.1. A weak Albanese for arbitrary C-pairs. If (-, �) is a C-pair @+
Alb
(-, �) = ∞,

then we have seen in Proposition 9.5 that an Albanese in the sense of De�nition 9.1 cannot

possibly exist. While it might be possible to de�ne a meaningful Albanese as an ind-

variety or as a (yet to be de�ned) ind-pair, we are convinced that a weak version of the

Albanese does exist within the world of classical C-pairs. For many practical purposes,

the following de�nition might be just as useful as De�nition 9.1 above.

De�nition 10.1 (�e weak Albanese of a C-pair). Let (-, �) be a C-pair where - is
compact. A weak Albanese of (-, �) is a normal analytic variety / ◦ and a morphism

walb(-, �)◦ : - ◦ → / ◦

such that the following universal property holds. If ((,Δ( ) is any C-semitoric pair and if
B◦ : (- ◦, �◦) → ((◦,Δ◦

(
) is any quasi-algebraic C-morphism, then there exists a C-semitoric

pair (�,Δ�), 0 ∈ �◦ and a commutative diagram of morphisms between analytic varieties

- ◦ / ◦ �◦ (◦,
walb(-,�)◦

B◦

] 2

such that the following holds.
(10.1.1) �e morphism ] is a generically injective.
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(10.1.2) �e composed morphism ] ◦walb(-, �)◦ is a quasi-algebraic C-morphism between
the pairs (- ◦, �◦) and (�◦,Δ◦

�
).

(10.1.3) �e morphism 2 is a quasi-algebraic C-morphism between the pairs (�◦,Δ◦
�
) and

((◦,Δ◦
(
).

Comparing De�nitions 9.1 and 10.1, one sees that De�nition 9.1 does not de�ne the

Albanese as a C-semitoric pair. Instead, it de�nes / ◦ as the normalized image of a hypo-

thetical Albanese variety and leaves the precise embedding of / ◦ into a C-semitoric pair

unspeci�ed. In this sense, De�nition 9.1 does not de�ne the Albanese map. It de�nes its

image.

Conjecture 10.2 (�e weak Albanese of a C-pair). Let (-, �) be a C-pair where - is com-

pact Kähler. �en, a weak Albanese of (-, �) exists. �e variety / ◦ and the morphism

walb(-, �)◦ are unique up to unique isomorphism. �e group AutO (- ) acts on / ◦ in a

way that makes the morphism walb(-, �)◦ equivariant.

With the tools available, we believe that Conjecture 10.2 can be shown without much

trouble, but we fear that a full proof would either add another ten pages to this already

long paper or needs to be integrated into the proof of �eorem 9.2, extending that proof

further and rendering it potentially un�t for human consumption. We will therefore re-

strict ourselves to the short sketch below and publish details elsewhere.

Sketch of proof. �e proof of �eorem 9.2 carries over in large parts. �e main di�erence

is Claim 9.13, which asserts that the quotient varieties �◦
X

stabilize as soon as we pass to

su�ciently �ne covers, that is, to covers that factorize via W . In absence of the hypothesis

@+
Alb
(-, �) < ∞ this cannot possibly hold true. Instead, we claim that it is not the �◦

X
that

stabilize, but it is the image sets img0◦
X
⊆ �◦

X
that does.

In order to make this precise, one needs to modify Choice 9.10. At the end of Step 1,

consider the numbers

3X := #dimension of img0◦
X
⊆ �X ,

3min := min

{
3X : X ∈ "

}
=X := #components in the typical non-empty �bre of 0◦

X
: - ◦ → �◦

X
,

=min := min

{
=X : X ∈ " and 3X = 3min

}
and choose one particular cover W ∈ " such that 3W = 3min and =W = =min. Once the

choice is made, take

/ ◦ := normalization of img0◦W

and let walb(-, �)◦ : - ◦ → / ◦ be the morphism obtained by applying the universal

property of the normalization map to the restricted morphism 0◦
X

: - ◦ → / ◦. With the

appropriate modi�cations, the required universal properties of walb(-, �)◦ will follow

by arguments analogous to those in Step 4 of the proof of �eorem 9.2. �

10.2. Inequalities between augmented irregularities. If (-, �) is a C-pair where -

is compact Kähler, then (5.6.1) immediately gives an inequality between the augmented

irregularities

(10.3.1) @+
Alb
(-, �) ≤ @+ (-, �).

We do not understand the meaning of Inequality (10.3.1). We do not know if (10.3.1) can

ever be strict. If it is strict, this means that adapted di�erentials come in two types.

• A subset of the adapted di�erentials comes from the Albanese morphism, at least

a�er passing to suitable high covers.

• �e general adapted di�erential is not induced by any morphism to a C-semitoric

pair.
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We do not understand this distinction and wonder if there is a geometric explanation,

perhaps in Hodge-theoretic terms.
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