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Abstract. This paper surveys Campana’s theory of C-pairs (or “geometric orbifolds”) in

the complex-analytic setting, to serve as a reference for future work. Written with a view

towards applications in hyperbolicity, rational points, and entire curves, it introduces the

fundamental definitions of C-pair-theory systematically. In particular, it establishes an

appropriate notion of “morphism”, which agrees with notions from the literature in the

smooth case, but it is better behaved in the singular setting and has functorial properties

that relate it to minimal model theory.

Contents

Introduction 2

1. Introduction 2

2. Notation and standard facts 4

Adapted tensors and adapted reflexive tensors 9

3. Adapted tensors 10

4. Adapted reflexive tensors 19

5. Pull-back over uniformizable pairs 25

6. Invariants of C-pairs 29

Morphisms of C-pairs 33

7. Diagrams admitting pull-back 33

8. Morphisms of C-pairs 36

9. Criteria for C-morphisms 38

10. Examples and counterexamples 42

11. Functoriality 46

12. Existence of categorical quotients 47

13. Pull-back and the Minimal Model Program 51

14. Relation to the literature 54

15. Problems and open questions 60

Appendix 62

Index of Concepts 63

List of Figures 64

List of Tables 64

References 64

Date: 15th July 2024.

2020 Mathematics Subject Classification. 32C99, 32H99.

Key words and phrases. C-pairs, morphisms of C-pairs, orbifoldes géométriques, Campana constellations.
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1. Introduction

1.1. C-pairs. Following earlier work of Miyaoka and others, Campana introduced “C-

pairs” or “geometric orbifolds” to complex-analytic geometry in his influential paper

[Cam04]. In simplest terms, C-pairs (𝑋, 𝐷) consist of a normal variety 𝑋 and a Q-divisor

with “standard coefficients”,

𝐷 =
∑︁
𝑖

𝑚𝑖 − 1

𝑚𝑖

· 𝐷𝑖 , where all𝑚𝑖 ∈ N≥2 ∪ {∞}.

Conceptually, C-pairs and their associated differentials interpolate between two “ex-

treme” geometries.

• The geometry of 𝑋 , which is governed by the sheaves Ω
𝑝

𝑋
of Kähler differentials.

• The geometry of 𝑋 \𝐷 , which is governed by the sheaves Ω
𝑝

𝑋
(log𝐷) of logarithmic

differentials.

C-pairs appear in higher-dimensional birational geometry, where geometers simplify line

bundles by passing to branched covers and use boundary divisors𝐷 to keep track of rami-

fication orders. They appear in the study of entire curves and rational points over function

fields, where the boundary divisors 𝐷 encode tangency conditions that are different from

(and in some settings more natural than) the conditions imposed by root stacks. In moduli

theory, geometers study fibrations and use boundary divisors 𝐷 as bookkeeping devices

for multiplicities of fibres.

Special pairs and pairs of general type. Campana has seen that C-pairs are the natural

objects that generalize the dichotomy between rational/elliptic and higher-genus curves

to higher dimensions. He attaches to every compact Kähler manifold 𝑋 a natural “core

fibration” that decomposes 𝑋 into the fibre space base, which is a C-pair of general type,

and the fibres, which are “special” in the sense that they do not admit dominant morphisms

to C-pairs of general type. C-pairs of general type and special C-pairs differ in almost

every aspect of topology or arithmetic/metric/analytic geometry. One aspect is illustrated

by the following conjecture.

Conjecture 1.1 (Campana). —

• Let 𝑋 be a projective manifold defined over a number field 𝑘 . Then, 𝑋 is special if

and only if its rational points are potentially dense
1
.

• Let 𝑋 be a complex projective manifold. Then, 𝑋 is special if and only if 𝑋 admits a

Zariski dense entire curve.

Conjecture 1.1 is a vast generalization of Lang’s famous conjectures. It motivates the

present paper and follow-up work on the “Albanese of a C-pair” that is currently in pre-

paration.

1.2. Content of the paper. This paper surveys Campana’s theory of C-pairs (or “geo-

metric orbifolds”) in the complex-analytic setting. Aiming to serve as a reference for

future work, it introduces the fundamental definitions of C-pairs-theory systematically.

Part I: Adapted tensors and differentials. Following ideas of [Miy08] and [CP15], the first

part of the present paper equips C-pairs with a (co)tangent bundle, with sheaves of dif-

ferential forms, and sheaves of higher-order tensors. These objects have been used in

[Miy08] to establish novel Chern class inequalities, and in [CP15] to construct natural

foliations on base spaces of families of canonically polarized manifolds.

1
potentially dense = there exists a finite field extension 𝑘 ⊆ 𝑘 ′ such that 𝑘 ′-rational points are Zariski dense

in 𝑋 .
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Conceptually, the “sheaves Ω
𝑝

(𝑋,𝐷 ) of C-pair-differentials” should interpolate between

the sheaves of Kähler– and logarithmic differentials,

Ω
𝑝

𝑋
⊆ Ω

𝑝

(𝑋,𝐷 ) ⊆ Ω
𝑝

𝑋
(log𝐷),

in the sense that sections of Ω
𝑝

(𝑋,𝐷 ) should be differentials on 𝑋 , with logarithmic poles

of fractional pole order
𝑚𝑖−1

𝑚𝑖
along the component 𝐷𝑖 of 𝐷 . While “differentials with

fractional pole order” do not exist on 𝑋 in any meaningful way, they can be defined on

suitable covers of the space 𝑋 . Sections 3 and 4 make these vague concepts precise. In

order to obtain a theory with good universal properties, these sections define “sheaves

of adapted reflexive differentials” on arbitrary covers of arbitrary C-pairs, including very

singular ones.

Section 5 shows that adapted reflexive differentials over C-pairs with mild singularities

have optimal pull-back properties, similar to the pull-back properties of reflexive differ-

entials on spaces with rational singularities, as established in [GKKP11, Keb13, KS21].

These results relate C-pairs to minimal model theory and will be instrumental when we

define morphisms of C-pairs in the second part of this paper.

With all preparations at hand, Section 6 discusses C-pair analogues of several clas-

sic invariants, including the “irregularity of C-pair” and a notion of “C-Kodaira-Iitaka

dimension for rank-one sheaves of adapted tensors”. The section extends the classical

vanishing theorem of Bogomolov-Sommese to C-pairs and defines the notion of “special

C-pairs”.

Part II: Morphisms of C-pairs. The second part of this paper defines and discusses “morph-

isms of C-pairs”. The basic idea is simple: If (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) are C-pairs and if

𝜑 : 𝑋 → 𝑌 is a morphism of analytic varieties, call 𝜑 a morphism of C-pairs if adapted

reflexive differentials on𝑌 pull back to adapted reflexive differentials on𝑋 . Sections 7 and

8 make this idea precise. Section 9 establishes criteria to guarantee that a given morph-

ism of varieties is a morphism of C-pairs. To illustrate these concepts and highlight some

features of our definition, Section 10 discusses several (non-)examples. Sections 11, 12

and 13 establish functoriality properties, the existence of categorical quotients, and relate

morphisms of C-pairs to basic notions of minimal model theory.

Section 14 compares our notion “morphism” with other notions that have appeared in

the literature. Among those, Campana’s definition of an orbifold morphisms is perhaps

the most prominent: if (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) are C-pairs and if 𝜑 : 𝑋 → 𝑌 is holomorphic,

then 𝜑 is called orbifold morphism if a purely numerical criterion holds, relating the coef-

ficients of boundary divisors 𝐷𝑋 and 𝐷𝑌 with multiplicities of pull-back divisors coming

from 𝑌 . To ensure that all quantities are well-defined, Campana defines orbifold morph-

isms only in settings where

(1.2.1) the space 𝑌 is Q-factorial, and

(1.2.2) the morphism 𝜑 does not take its image inside the support of 𝐷𝑌 .

For morphism between smooth pairs that satisfy (1.2.2), Campana’s definition coincides

with ours, and is generally easier to check. For singular pairs, Campana’s definition and

ours do not coincide in general, even in cases where all pairs are uniformizable. The dif-

ference will be of great importance for the applications to Conjecture 1.1, where singu-

larities naturally appear through minimal model theory and purely numerical data might

not always suffice to capture the conceptually right geometric picture.

Section 15 gathers several open questions and mentions problems for future research.

1.3. Outlook. This publication is the first in a series; two follow-up papers will likely ap-

pear later this year. Building on notions and fundamental results obtained here, a second

paper, [KR24a], will introduce “C-semitoric varieties” as analogues of Abelian varieties

and (semi)tori used in the classic complex geometry. It follows Serre by defining the
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Albanese of a C-pair as the universal map to a C-semitoric variety and shows that the

Albanese exists in relevant cases.

Aiming to establish hyperbolicity properties of C-pairs with large irregularity, a third

paper, [KR24b], will extend the fundamental theorem of Bloch-Ochiai to the context of

C-pairs. Building on works of Kawamata, Ueno, and Noguchi, it recasts parabolic Nevan-

linna theory as a “Nevanlinna theory for C-pairs”. The authors hope that this approach

might be of independent interest

1.4. Acknowledgements. The authors would like to thank Oliver Bräunling, Lukas

Braun, Michel Brion, Fabrizio Catanese, Johan Commelin, Andreas Demleitner, Zsolt Pa-

takfalvi, and Wolfgang Soergel for long discussions. Pedro Núñez pointed us to several

mistakes in early versions of the paper. Jörg Winkelmann patiently answered our ques-

tions throughout the work on this project.

The work on this paper was carried out in part while Stefan Kebekus visited Zsolt

Patakfalvi at the EPFL. He would like to thank Patakfalvi and his group for hospitality

and for many discussions.

2. Notation and standard facts

This paper works in the category of complex analytic spaces and is written with a

view towards a future C-Nevanlinna theory. All the material in this paper will however

work in the complex-algebraic setting, typically with simpler definitions and proofs. We

expect that large parts of this paper will work for algebraic varieties over perfect fields

of arbitrary characteristic and refer the reader to [KPS22], which discusses C-curves over

global function fields.

2.1. Global conventions. With very few exceptions, we follow the notation of the

standard reference texts [GR84, Dem12, NW14]. An analytic variety is a reduced, irredu-

cible complex space. For clarity, we refer to holomorphic maps between analytic varieties

as morphisms and reserve the word map for meromorphic mappings.

Definition 2.1 (Big and small sets). Let𝑋 be an analytic variety. An analytic subset𝐴 ⊊ 𝑋
is called small if it has codimension two or more. An open set 𝑈 ⊆ 𝑋 is called big if 𝑋 \𝑈
is analytic and small.

2.2. Sheaves. The following notation will be used to speak about “meromorphic differen-

tials” on normal spaces. We refer the reader to [Sta21, Tag 01X1] for a further discussion

of meromorphic sections of coherent sheaves.

Notation 2.2 (Meromorphic functions). If 𝑋 is any normal analytic variety, write M𝑋 for

the sheaf of meromorphic functions. If E is any reflexive, coherent sheaf on 𝑋 , we call

E ⊗ M𝑋 the sheaf of meromorphic sections in E .

Notation 2.3 (Meromorphic section with prescribed location of poles). Let 𝑋 be a normal

analytic variety and let 𝐷 ∈ Div(𝑋 ) be a Weil divisor. If E is any coherent, locally free

sheaf on 𝑋 , write E (∗𝐷) ⊂ E ⊗ M𝑋 for the sheaf of meromorphic sections in E that are

allowed to have poles along the support of 𝐷 .

Notation 2.4 (Differentials with logarithmic poles). Let𝑋 be a normal analytic variety and

let𝐷 ∈ QDiv(𝑋 ) be an effective WeilQ-divisor on𝑋 , with nc support. For brevity, we will

often write Ω
𝑝

𝑋
(log𝐷) to denote the sheaves of Kähler differentials with logarithmic poles

along supp𝐷 . We will use the correct, but longer forms Ω
𝑝

𝑋
(log supp𝐷) or Ω

𝑝

𝑋
(log𝐷red)

only if confusion is likely to arise.

This paper frequently works with reflexive sheaves on normal analytic varieties. The

following notation will be used.

https://stacks.math.columbia.edu/tag/01X1
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Notation 2.5 (Reflexive hull and reflexive pull-back). If E is any coherent sheaf on a normal

analytic variety 𝑋 , we will frequently write E ∨∨
for its double dual, which is a coherent,

reflexive sheaf. We refer to E ∨∨
as the reflexive hull of E . If 𝑛 ∈ N is any number, define

the reflexive tensor power and reflexive symmetric power of E as

E [⊗𝑛]
:=

(
E ⊗𝑛 )∨∨

and Sym
[𝑛] E :=

(
Sym

𝑛 E
)∨∨

.

Given any Weil divisor 𝐷 ∈ Div(𝑋 ), define the reflexive twist of E by 𝐷 as

E (𝐷) :=
(
E ⊗ O𝑋 (𝐷)

)∨∨
.

If 𝜑 : 𝑌 → 𝑋 is any morphism from a normal analytic variety 𝑌 , we will often write

𝜑 [∗]E := (𝜑∗E )∨∨ and refer to this sheaf as the reflexive pull-back of E .

Notation 2.6 (Reflexive differentials). Let𝑋 be a normal analytic variety and write Ω
[𝑝 ]
𝑋

:=(
Ω
𝑝

𝑋

)∨∨
. Given a Weil Q-divisor 𝐷 ∈ QDiv(𝑋 ), write Ω

[𝑝 ]
𝑋

(log𝐷) :=
(
Ω
𝑝

𝑋
(log𝐷)

)∨∨
. By

minor abuse of language, we refer to sections in these sheaves as reflexive (logarithmic)
differentials.

Remark 2.7 (Reflexive differentials and prolongations). In the setting of Notation 2.6, if

𝑋 + ⊂ 𝑋 is the maximal open set where (𝑋, supp𝐷) is nc and if 𝜄 : 𝑋 + → 𝑋 denotes the

inclusion map, then there exists a canonical isomorphism Ω
[𝑝 ]
𝑋

(log𝐷) � 𝜄∗Ω𝑝

𝑋 + (log𝐷).
We refer the reader to [Ser66, Thm. 1 and Prop. 7] for details.

Reminder 2.8 (Reflexive sheaves of rank one, base loci and meromorphic maps). If F
is any rank-one, coherent reflexive sheaf on a normal analytic variety 𝑋 , then F |𝑋reg

is

locally free. If 𝑉 ⊆ 𝐻 0
(
𝑋, F

)
is non-trivial and finite-dimensional, then the associated

holomorphic

𝑋reg \ (Base locus 𝑉 ) → P(𝑉 ∨)
extends to a meromorphic mapping 𝑋 d P(𝑉 ∨). For a proof, recall a fundamental result

of Rossi, [Ros68, Thm. 3.5] or [GR70, Thm. 1.1]: there exists a proper modification 𝜋 :

𝑋 ↠ 𝑋 such that 𝜋∗F/tor is locally free, hence invertible.

2.3. Weil Q-divisors and pairs. Much of our discussion is centred around Weil Q-

divisors on normal analytic varieties. The following standard language will be used.

Notation 2.9 (Q-Cartier and locallyQ-Cartier divisors). Let𝑋 be a normal analytic variety

and let 𝐷 ∈ QDiv(𝑋 ) be a Weil Q-divisor on 𝑋 .

(2.9.1) The divisor 𝐷 is called Q-Cartier if there exists a positive number𝑚 ∈ N+
such

that𝑚 · 𝐷 is integral and Cartier.

(2.9.2) The divisor 𝐷 is called locally Q-Cartier if every point 𝑥 ∈ 𝑋 has an open neigh-

bourhood𝑈 = 𝑈 (𝑥) ⊆ 𝑋 such that 𝐷 |𝑈 is Q-Cartier on𝑈 .

Notation 2.10 (Q-factorial and locally Q-Cartier varieties). Let 𝑋 be a normal analytic

variety.

(2.10.1) The variety 𝑋 is called Q-factorial if every Weil Q-divisor on 𝑋 is Q-Cartier.

(2.10.2) The variety 𝑋 is called locally Q-factorial if there exists a basis of topology,

(𝑈𝛼 )𝛼∈𝐴, where all𝑈• are Q-factorial analytic varieties.

Remark 2.11 (Local and global properties in analytic geometry). In contrast to algebraic

geometry, the local properties in Notation 2.9 and 2.10 do not imply the global ones. It is

not hard to construct a non-compact, normal analytic surface 𝑆 and a prime Weil divisor

𝐷 ∈ Div(𝑆) with the following properties.

(2.11.1) The singular locus 𝑆sing = {𝑠1, 𝑠2, . . .} is countable infinite, discrete, and contained

in the support of 𝐷 . In particular, 𝑆 has only isolated singularities.

(2.11.2) If 𝑛 ∈ N+
is any number, then 𝑛 · 𝐷 is Cartier on the set 𝑆reg ∪ {𝑠𝑛}, which is an

open neighbourhood of the singular point 𝑠𝑛 . If 𝑚 ∈ N+
is larger than 𝑛, then

𝑛 · 𝐷 is not Cartier in any neighbourhood of the singular point 𝑠𝑚 .
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In these examples, the divisor 𝐷 is locally Q-Cartier but not Q-Cartier. Similar examples

exist for factoriality.

Notation 2.12 (Operations on Weil Q-divisors). Let 𝑋 be a normal analytic variety and

let 𝐷 ∈ QDiv(𝑋 ) be a Weil Q-divisor on 𝑋 . Following standard notation, we denote

the round-down, round-up and the fractional part of 𝐷 by ⌊𝐷⌋, ⌈𝐷⌉, and {𝐷} := 𝐷 − ⌊𝐷⌋,
respectively. We call𝐷 reduced if all its coefficients are one, and write𝐷red for the reduced

Weil divisor obtained by setting all non-vanishing coefficients of 𝐷 to one.

Definition 2.13 (Pair, log pair, nc pair). A pair is a tuple (𝑋, 𝐷) consisting of a normal
analytic variety𝑋 and a WeilQ-Divisor𝐷 on𝑋 with coefficients in the interval (0 . . . 1] ∩Q.

• Call (𝑋, 𝐷) a log pair if 𝐷 is reduced.
• Call (𝑋, 𝐷) a nc pair if 𝑋 is smooth and 𝐷 has normal crossing support.

Notation 2.14 (Open part of a pair). Let (𝑋, 𝐷) be a pair. The open part is the pair (𝑋 ◦, 𝐷◦),
where 𝑋 ◦

:= 𝑋 \ supp⌊𝐷⌋ and 𝐷◦
:= 𝐷 ∩ 𝑋 ◦

.

Observation 2.15 (Open sets where pair is nc). Let (𝑋, 𝐷) be a pair. Since the property “nc

pair” is local and open, there exists a maximal open subset 𝑋 + ⊆ 𝑋 where the pair is nc.

Observe that this subset is big.

Definition 2.16 (Gorenstein conditions). —
• Call a pair (𝑋, 𝐷) Gorenstein if the Q-divisor 𝐷 is integral and the sheaf(

𝜔𝑋 ⊗ O𝑋 (𝐷)
)∨∨

is locally free.
• Call a pair (𝑋, 𝐷) Q-Gorenstein if there exists a number𝑚 ∈ N+ such that the divisor
𝑚 · 𝐷 is integral and the sheaf(

𝜔⊗𝑚
𝑋

⊗ O𝑋 (𝑚 · 𝐷)
)∨∨

is locally free.
• Call a pair (𝑋, 𝐷) locally Q-Gorenstein if there exists an open covering 𝑋 = ∪𝑖𝑋𝑖

such that the pairs (𝑋𝑖 , 𝐷 ∩ 𝑋𝑖 ) are Q-Gorenstein.

Remark 2.17 (Gorenstein conditions and the canonical divisor). For pairs (𝑋, 𝐷) where

a canonical divisor 𝐾𝑋 exists
2
, the Gorenstein conditions of Definition 2.16 can be refor-

mulated as asking that 𝐾𝑋 + 𝐷 is Cartier, Q-Cartier or locally Q-Cartier, respectively.

2.4. Covers and 𝑞-morphisms. Large parts of this paper are concerned with quasi-

finite morphism between normal varieties of equal dimension. For brevity, the following

notation will be used.

Definition 2.18 (𝑞-morphisms, relative automorphisms). Quasi-finite morphisms be-
tween normal analytic varieties of equal dimension are called 𝑞-morphisms. If 𝛾 : 𝑋 → 𝑋

is a 𝑞-morphism, consider the relative automorphism group

AutO
(
𝑋/𝑋

)
:=

{
𝑔 ∈ AutO (𝑋 ) : 𝛾 ◦ 𝑔 = 𝛾

}
.

Reminder 2.19 (Openness). Recall that 𝑞-morphisms are open, [GR84, Sect. 3.2]. The rel-

ative automorphism group of a 𝑞-morphism is finite and acts holomorphically.

Reminder 2.20 (Pull-back of Weil Q-divisors). If 𝛾 : 𝑋 → 𝑋 is a 𝑞-morphism, there exists

a well-defined pull-back morphism for Weil divisors,

𝛾∗ : Div(𝑋 ) → Div(𝑋 ),
that agrees over 𝑋reg with the standard pull-back of Cartier divisors, respects linear equi-

valence and therefore induces a morphism between Weil divisor class groups.

2
A canonical divisor exists if the sheaf𝜔𝑋 has a meromorphic section. This is the case if the normal analytic

variety 𝑋 is Stein or quasi-projective. A compact complex manifold of algebraic dimension zero need not have

a canonical divisor.
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Definition 2.21 (Covers, Galois covers). Finite morphisms between normal analytic vari-
eties of equal dimension are called covers. A cover 𝛾 : 𝑋 → 𝑌 is called Galois if it is
isomorphic to the quotient morphism

𝑞 : 𝑋 → 𝑋
/

AutO
(
𝑋/𝑌

)
.

Covers are necessarily surjective. We do not require that Galois covers are locally

biholomorphic. We refer the reader to [Car57, Thm. 4] for quotients of analytic varieties.

Notation 2.22 (Branch and ramification divisor). If𝛾 : 𝑋 ↠ 𝑌 is a cover, write Branch(𝛾) ∈
Div(𝑌 ) for the reduced Weil divisor on𝑌 whose support equals the codimension-one part

of the branch locus of 𝛾 . Analogously, write Ramification(𝛾) ∈ Div(𝑋 ) for the reduced

Weil divisor on 𝑋 whose support equals the codimension-one part of the ramification

locus of 𝛾 .

The following lemma allows us to compare logarithmic differentials on the domain and

target of a cover. The proof follows most easily from a local computation. We refer the

reader to [GKK10, Sect. 2.C] for details and for related results.

Lemma 2.23 (Criterion for log poles). Let 𝛾 : 𝑋 ↠ 𝑌 be a cover, let 𝐷 be a reduced Weil
divisor on 𝑌 , and let 𝜎 be a meromorphic differential form with poles along 𝐷 . Assume that
the pairs (𝑌, 𝐷) and (𝑋,𝛾∗𝐷) are both nc. Then, the following statements are equivalent.
(2.23.1) The form 𝜎 ∈ 𝐻 0

(
𝑌, Ω

𝑝

𝑌
(∗𝐷)

)
has logarithmic poles.

(2.23.2) The pull-back form (d𝛾)𝜎 ∈ 𝐻 0
(
𝑋, Ω

𝑝

𝑋
(∗𝛾∗𝐷)

)
has logarithmic poles. □

2.5. C-pairs and adapted morphisms. The key notion of the present paper is the C-

pair, also called orbifolde géométrique by Campana [Cam11, Def. 2.1] or Campana con-
stellation by Abramovich [Abr09, Lecture 2]. We recall the definition for the reader’s

convenience.

Definition 2.24 (C-pairs, see [Cam11, Sect. 2.1]). A C-pair is a pair (𝑋, 𝐷) where the Weil
Q-divisor 𝐷 is of the form

𝐷 =
∑︁
𝑖

𝑚𝑖 − 1

𝑚𝑖

· 𝐷𝑖 ,

with𝑚𝑖 ∈ N≥2 ∪ {∞} and ∞−1

∞ = 1.

Notation 2.25 (C-multiplicity). In the setting of Definition 2.24, if 𝐻 ⊂ 𝑋 is any prime

divisor, define the C-multiplicity of 𝐷 along 𝐻 as

multC,𝐻 𝐷 :=

{
𝑚𝑖 if there exists an index 𝑖 with 𝐻 = 𝐷𝑖

1 otherwise.

It will sometimes be convenient to consider the following Weil Q-divisor

𝐷orb :=
∑︁

𝑖 |𝑚𝑖<∞

1

𝑚𝑖

· 𝐷𝑖 ∈ QDiv(𝑋 ).

C-pairs come with a class of distinguished morphisms, called adapted morphisms.

Definition 2.26 (Adapted morphism, compare [CP19, Sect. 5.1]). Consider a C-pair
(𝑋, 𝐷). A 𝑞-morphism 𝛾 : 𝑋 → 𝑋 is called adapted for (𝑋, 𝐷) if 𝛾∗𝐷orb is integral. The
morphism 𝛾 is called strongly adapted for (𝑋, 𝐷) if 𝛾∗𝐷orb is reduced.

The word “adapted” is not used uniformly in the literature. Morphisms that we call

“adapted” are called “subadapted” in [JK11] and other papers.

Observation 2.27 (Composition). In the setup of Definition 2.26, let

𝑋1 𝑋2 𝑋
𝛾1 𝛾2

be a sequence of 𝑞-morphisms. If 𝛾2 is adapted for (𝑋, 𝐷), then so is 𝛾2 ◦ 𝛾1. □
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2.5.1. Uniformization. The following Sections 3 and 4 introduce adapted (reflexive) dif-

ferentials, a class of differential forms that exist on the domain of a 𝑞-morphism. Uni-

formizations are adapted morphisms where these differentials take a particularly simple

form. Example 4.6 on page 21 compares adapted differentials with Kähler differentials

and makes this vague statement precise.

Definition 2.28 (Uniformization of a C-pair). Let (𝑋, 𝐷) be a C-pair. A uniformiza-

tion of (𝑋, 𝐷) is a strongly adapted cover 𝑢 : 𝑋𝑢 ↠ 𝑋 where Branch(𝑢) ⊆ supp𝐷 and
(𝑋𝑢, supp𝑢∗⌊𝐷⌋) has normal crossings.

Example 2.29 (Neil’s parabola and three lines through a common point). The C-pairs(
C2, 1

2
· {𝑥2 = 𝑦3}

)
and

(
C2, 2

3
· {𝑥 = 0} + 2

3
· {𝑦 = 0} + 1

2
· {𝑥 = 𝑦}

)
are uniformizable. The proof is part of the classification of orbifaces with smooth base,

[Ulu07]. In each example, one computes that the orbifold fundamental group is finite.

The associated orbifold-universal branched covering is a locally simply connected, normal

surface and hence smooth by Mumford’s classic result [Mum61, Thm. on p. 229]. We refer

the reader to [Ulu07, Sect. 3 and Thm. 3.2] for precise statements, a full classification with

more examples, and details.

Remark 2.30 (Branch divisor and branch locus). Recall from Notation 2.22 that Branch(𝑢)
denotes the codimension-one part of the branch locus for the morphism 𝑢. Uniformiza-

tions may branch over a codimension-two set that is not contained in supp𝐷 .

Remark 2.31 (Uniformizations and 𝑞-morphisms). Let (𝑋, 𝐷) be a C-pair and let 𝛾 : 𝑋 →
𝑋 be any 𝑞-morphism. Then, there exists a maximal open subset 𝑋 + ⊆ 𝑋 over which 𝛾 is

a uniformization. The set 𝑋 + ⊆ 𝑋 is Zariski open, but not necessarily big.

Definition 2.32 (Uniformizable C-pairs). A C-pair (𝑋, 𝐷) is uniformizable if there ex-
ists a uniformization. It is locally uniformizable if every point of 𝑋 has a uniformizable
neighbourhood.

Remark 2.33. If a C-pair is nc, then it is locally uniformizable. If (𝑋, 𝐷) is any C-pair, then

there exists a maximal open subset 𝑋 lu ⊆ 𝑋 over which (𝑋, 𝐷) is locally uniformizable.

The set 𝑋 lu ⊆ 𝑋 is Zariski open and big.

Remark 2.34 (Q-factoriality of (locally) uniformizable pairs). Uniformizable pairs are Q-

factorial. Locally uniformizable pairs are locally Q-factorial. Both statements follow

[KM98, Lem. 5.16], whose (short) proof applies without change in the analytic setting.

Remark 2.35 (Singularities of locally uniformizable pairs). If a C-pair (𝑋, 𝐷) is locally

uniformizable, then the pair (𝑋, 𝐷) is klt, [KM98, Prop. 5.13]. Recalling that klt singular-

ities are rational, [KM98, Thm. 5.22] and [Fuj22, Thm. 3.12]
3
, it follows that𝑋 has rational

singularities.

2.5.2. Existence of adapted covers. A standard computation shows that strongly adapted

covers always exist locally.

Lemma 2.36 (Strongly adapted covers exist locally). Let (𝑋, 𝐷) be a C-pair as in Defini-
tion 2.24. Assume that one of the following holds.

(2.36.1) The space 𝑋 is Stein and the divisor 𝐷 has only finitely many components.
(2.36.2) The space 𝑋 is projective.

If 𝑥 ∈ 𝑋 \ supp{𝐷} is any point, then there exists a strongly adapted Galois cover with cyclic
group that is locally biholomorphic over 𝑥 .

3
See also the vanishing theorems proven in [Fuj23].
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Proof. We consider only the Stein setting and refer the reader to [Laz04, Sect. 4.1.B] for

the projective setting. The assumption that𝑋 is Stein guarantees that there exist functions

𝑓𝑖 ∈ O𝑋 (𝑋 ) such that the following holds for every index 𝑖 .

• The function 𝑓𝑖 vanishes along the Weil divisor 𝐷𝑖 to order one.

• The function 𝑓𝑖 does not vanish along any of the Weil divisors 𝐷 𝑗 , for 𝑗 ≠ 𝑖 .

• The function 𝑓𝑖 does not vanish at 𝑥 .

We can then set 𝑛 := lcm{𝑚𝑖 : 𝑚𝑖 < ∞} and

𝑋 := normalisation of

{
(𝑥,𝑦) ∈ 𝑋 × A1

: 𝑦𝑛 =
∏

𝑖 |𝑚𝑖<∞
𝑓
𝑛/𝑚𝑖

𝑖
(𝑥)

}
. □

Remark 2.37. In the proof of Lemma 2.36, if the components of {𝐷} are Cartier and linearly

trivial, then we can find functions 𝑓𝑖 that vanish only at𝐷𝑖 , and the construction will yield

a cover that is locally biholomorphic away from supp{𝐷}.

Remark 2.38. If (𝑋, 𝐷) is a C-pair where 𝑋 is compact but not projective, then it is not

clear that an adapted cover exists.

2.5.3. C-pairs and root stacks. Looking at the definition of an adapted morphism, the

reader might wonder about the relation of C-pairs and root stacks. We argue that the

two notions are conceptually quite different. For now, observe that Definitions 2.24 and

2.26 do not ask that 𝐷 or 𝐷𝑖 are Cartier. For the construction of root stack, the Cartier

assumption is however essential.

2.6. Weil divisorial sheaves. Integral Weil divisors on normal spaces define Weil di-
visorial sheaves, that is, coherent, reflexive sheaves of rank one. Since we will later need

to discuss Weil divisorial sheaves on singular spaces, we briefly recall the relevant defin-

itions, facts and constructions.

Notation 2.39 (Weil divisorial sheaves). Let 𝑋 be a normal analytic variety and let 𝐷 =∑
𝑚𝑖 · 𝐷𝑖 be an effective Weil divisor on 𝑋 . Following standard notation, consider the

associated Weil divisorial sheaf

O𝑋 (−𝐷) =
(⊗

𝑖

J ⊗𝑚𝑖

𝐷𝑖

)∨∨
.

By construction, this sheaf is reflexive of rank one, and comes with a natural embedding

O𝑋 (−𝐷) ↩→ O𝑋 . We denote the quotient by O𝐷 := O𝑋 /O𝑋 (−𝐷).

Remark 2.40 (Inclusions and projections). Let𝑋 be a normal analytic variety and let𝐷1 ≤
𝐷2 be two effective Weil divisors on 𝑋 . Then, O𝑋 (−𝐷2) ⊆ O𝑋 (−𝐷1), and so there exists

a natural surjection O𝐷2
↠ O𝐷1

.

In the setting of Reminder 2.20, where a meaningful pull-back of a Weil divisor can

be defined, the sheaf O
𝑋
(−𝛾∗𝐷) associated to a pull-back divisor is generally not equal

to the pull-back sheaf 𝛾∗O𝑋 (−𝐷); note that the pull-back sheaf need not be reflexive or

torsion free. Still, there exists a comparison morphism that becomes isomorphic if 𝐷 is

Cartier.

Remark 2.41 (Pull-back of divisors and sheaves). Let 𝛾 : 𝑋 → 𝑋 be a 𝑞-morphism and let

𝐷 ∈ Div(𝑋 ) be an effective Weil divisor on 𝑋 . By construction, there exists a canonical

morphism

𝛾∗O𝑋 (−𝐷) → O
𝑋

(
−𝛾∗𝐷

)
that is isomorphic over the big open subset of 𝑋 where 𝐷 is Cartier. If 𝐷 is Cartier on all

of 𝑋 , then O𝑋 (−𝐷) is invertible, the pull-back sequence reads

0 → O
𝑋
(−𝛾∗𝐷) → O

𝑋
→ 𝛾∗O𝐷 → 0,

and is exact. It follows that 𝛾∗O𝐷 = O𝛾∗𝐷 .
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Ω1

𝑋
⊆ Ω1

(𝑋,𝐷 ) ⊆ Ω1

𝑋
(log𝐷)〈

𝑑𝑧
〉
O𝑋

⊆
〈
𝑧−

𝑚−1

𝑚 · 𝑑𝑧
〉
O𝑋

⊆
〈
𝑧−1 · 𝑑𝑧

〉
O𝑋
.

Table 1. Hypothetical sheaves and generators on 𝑋 = A1

3. Adapted tensors

If𝑋 is a compact Kähler manifold, the sheaves Ω
𝑝

𝑋
of holomorphic differentials govern

the geometry and topology of 𝑋 . If 𝐷 ∈ Div(𝑋 ) is a smooth prime divisor, the sheaves

Ω
𝑝

𝑋
(log𝐷) of logarithmic differentials govern the geometry and topology of 𝑋 \ 𝐷 .

The sequence (𝑋, 𝑛−1

𝑛
· 𝐷) of C-pairs is meant to interpolate between the compact

manifold 𝑋 and the non-compact manifold 𝑋 \ 𝐷 . Along these lines, the sheaves of ad-
apted differentials are meant to interpolate between the sheaves Ω

𝑝

𝑋
and the larger sheaf

Ω1

𝑋
(log𝐷). Conceptually, an adapted differential is a differential on 𝑋 with a logarithmic

pole of fractional pole order
𝑛−1

𝑛
along 𝐷 . Differentials with fractional pole order do not

exist on 𝑋 in any meaningful way. To make the vague concept precise, we work on cov-

ers, where adapted differentials can be defined as differentials that “locally look” as if they

were the pull-back of differentials on 𝑋 that had poles of the appropriate order.

Relation to the literature. Adapted differentials have been discussed in the literature, but

usually not in a very systematic fashion. We refer the reader to Campana’s original pa-

pers [Cam04, Cam11], to the paper [CP19] of Campana and Păun, and to Miyaoka’s classic

[Miy08] for details, applications and further references. The paper [KPS22, Sect. 6] dis-

cusses related definitions in positive characteristic, the paper [CKT21, Sect. 3] spells out

equivalent, but perhaps more elementary-looking definitions.

Taking a somewhat different point of view, Pedro Núñez considered the algebraic set-

ting, where 𝑋 is a scheme, and constructed a presheaf of “adapted differentials” on the

category Sch/𝑋 that is a sheaf with respect to the qfh-topology, [Nú23a]. If everything is

algebraic, the constructions outlined in this section are compatible with those of Núñez.

3.1. Sample computations. To prepare the reader for the somewhat technical discus-

sion in Definition 3.2 on page 12, we illustrate the main ideas in two simple cases first.

The reader who is already familiar with “adapted differentials” might want to skip this

section.

3.1.1. Sample computation in dimension one. Equip A1
with a coordinate 𝑧 and consider

the simple case where

(𝑋, 𝐷) =
(
A1, 𝑚−1

𝑚
· {0}

)
, for one number𝑚 ∈ N+.

The sheaf Ω1

(𝑋,𝐷 ) of differential forms with logarithmic poles of order
𝑚𝑖−1

𝑚𝑖
should then

ideally look as shown in Table 1. The reader will immediately note that 𝑧−
𝑚−1

𝑚 cannot

possibly exist as a single-valued function on 𝑋 , unless 𝑚 = 1 or 𝑚 = ∞. To resolve the

problem, write 𝑋 := A1
, choose a number 𝛼 ∈ N+

and consider the cover

𝛾 : 𝑋 → 𝑋, 𝑧 ↦→ 𝑧𝛼 ·𝑚 .

Applying the formal rules of derivation, we find that

𝑑𝛾

(
𝑧−

𝑚−1

𝑚 · 𝑑𝑧
)
= 𝛼𝑚 · 𝑧𝛼−1 · 𝑑𝑧.

Accordingly, as shown in Table 2, there exists a sheaf Ω1

(𝑋,𝐷,𝛾 ) of differentials on 𝑋 that

looks as if it was the pull-back 𝛾∗Ω1

(𝑋,𝐷 ) of the hypothetical sheaf Ω1

(𝑋,𝐷 ) on𝑋 . The inclu-

sion 𝛾∗Ω1

𝑋
⊆ Ω1

(𝑋,𝐷,𝛾 ) allows interpreting sections in Ω1

(𝑋,𝐷,𝛾 ) as meromorphic sections
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𝛾∗Ω1

𝑋
⊆ Ω1

(𝑋,𝐷,𝛾 ) ⊆ 𝛾∗Ω1

𝑋
(log𝐷)〈

𝑧𝛼𝑚−1 · 𝑑𝑧
〉
O
𝑋

⊆
〈
𝑧𝛼−1 · 𝑑𝑧

〉
O
𝑋

⊆
〈
𝑧−1 · 𝑑𝑧

〉
O
𝑋

.

Table 2. Sheaves and generators on 𝑋 = A1

Ω1

𝑋
⊆ Ω1

(𝑋,𝐷 ) ⊆ Ω1

𝑋
(log𝐷)〈

𝑑𝑥, 𝑑𝑦
〉
O𝑋

⊆
〈
𝑑𝑥, 𝑦−

𝑚−1

𝑚 · 𝑑𝑦
〉
O𝑋

⊆
〈
𝑑𝑥, 𝑦−1 · 𝑑𝑦

〉
O𝑋
.

Table 3. Hypothetical sheaves and generators on 𝑋 = A2

𝛾∗Ω1

𝑋
⊆ Ω1

(𝑋,𝐷,𝛾 ) ⊆ 𝛾∗Ω1

𝑋
(log𝐷)〈

𝑑𝑥, 𝑦𝛼𝑚−1 · 𝑑𝑦
〉
O
𝑋

⊆
〈
𝑑𝑥, 𝑦𝛼−1 · 𝑑𝑦

〉
O
𝑋

⊆
〈
𝑑𝑥, 𝑦−1 · 𝑑𝑦

〉
O
𝑋

.

Table 4. Sheaves and generators on 𝑋 = A2

of 𝛾∗Ω1

𝑋
with a pole of order 𝛼 · (𝑚 − 1) along {0}. Given that 𝛾∗𝐷 = 𝛼 (𝑚 − 1) · {0}, we

can write Ω1

(𝑋,𝐷,𝛾 ) in a coordinate-free way as

(3.0.1) Ω1

(𝑋,𝐷,𝛾 ) = O
𝑋
(𝛾∗𝐷) ⊗ 𝛾∗Ω1

𝑋 .

3.1.2. Sample computation in dimension two. Next, equip A2
with coordinates 𝑥,𝑦 and

consider the pair

(𝑋, 𝐷) =
(
A2, 𝑚−1

𝑚
· {𝑦 = 0}

)
, for one number𝑚 ∈ N+ .

The sheaf Ω1

(𝑋,𝐷 ) of differential forms with logarithmic poles of order
𝑚𝑖−1

𝑚𝑖
should then

ideally look as shown in Table 3. As before, write 𝑋 := A2
, choose a number 𝛼 ∈ N+

and

consider the cover

𝛾 : 𝑋 → 𝑋, (𝑥,𝑦) ↦→
(
𝑥,𝑦𝛼 ·𝑚

)
.

Again, we find a sheaf Ω1

(𝑋,𝐷,𝛾 ) of differentials on 𝑋 that looks as if it was the pull-back

𝛾∗Ω1

(𝑋,𝐷 ) of the hypothetical sheaf Ω1

(𝑋,𝐷 ) = ⟨𝑑𝑥,𝑦−𝑚−1

𝑚 · 𝑑𝑦⟩O𝑋
. Table 4 spells out the

details. In contrast to the one-dimension case, observe that Equation (3.0.1) no longer

describes Ω1

(𝑋,𝐷,𝛾 ) in the present setting. In fact, it turns out that

O
𝑋
(𝛾∗𝐷) ⊗ 𝛾∗Ω1

𝑋 =
〈
𝑦−𝛼 · (𝑚−1) · 𝑑𝑥, 𝑦𝛼−1 · 𝑑𝑦

〉
O
𝑋

is a strict supersheaf of Ω1

(𝑋,𝐷,𝛾 ) . To this end, observe that sections in O
𝑋
(𝛾∗𝐷) ⊗ 𝛾∗Ω1

𝑋

are required to have the correct pole order, but need not have logarithmic poles. The

following coordinate-free description avoids that problem,

(3.0.2) Ω1

(𝑋,𝐷,𝛾 ) = O
𝑋
(𝛾∗𝐷) ⊗ 𝛾∗Ω1

𝑋︸                ︷︷                ︸
=:A1,1

∩ Ω1

𝑋
(log𝛾∗𝐷)︸          ︷︷          ︸
=:B1,1

.

Here, the intersection takes place in the sheaf O
𝑋
(∗𝛾∗𝐷) ⊗

(
𝛾∗Ω1

𝑋

)
that contains both A1,1

and B1,1.



12 STEFAN KEBEKUS AND ERWAN ROUSSEAU

3.1.3. Further generalizations. In principle, one would like to take (3.0.2) as the definition

of Ω1

(𝑋,𝐷,𝛾 ) . There are, however, several further generalizations that we would like to

consider.

Arbitrary 𝑞-morphisms: The morphisms 𝛾 that we considered in Section 3.1.1–3.1.2

were adapted covers of the pair (𝑋, 𝐷). In practise, adapted covers do not always

exist
4
. For technical reasons, we will need to define Ω1

(𝑋,𝐷,𝛾 ) for 𝑞-morphisms 𝛾

that are not necessarily adapted. There, we use the round-down of 𝛾∗𝐷 as the best

approximation, replacing the sheaf A1,1 of (3.0.2) by

A1,1 := O
𝑋

(
⌊𝛾∗𝐷⌋

)
⊗ 𝛾∗Ω1

𝑋 .

Logarithmic boundary components: Sections 3.1.1–3.1.2 considered pairs (𝑋, 𝐷)
where ⌊𝐷⌋ = 0. In case where 𝐷 is reduced, the setting simplifies dramatically,

as the “sheaf Ω
𝑝

(𝑋,𝐷 ) of differential forms with logarithmic poles of order
∞−1

∞ ” is

simply Ω1

𝑋
(log𝐷). In general, where𝐷 is allowed to have reduced and non-reduced

components, we consider the fractional and integral part of 𝐷 separately, replacing

the sheaf A1,1 of (3.0.2) by

A1,1 := O
𝑋

(
⌊𝛾∗{𝐷}⌋

)
⊗ 𝛾∗Ω1

𝑋

(
log⌊𝐷⌋

)
.

Higher-order tensors: In addition to sections of Ω1

•, we will also need to consider

𝑝-forms and more generally sections in symmetric powers of Ω
𝑝
• . Again, this forces

us to generalize, replacing A1,1 and B1,1 by the sheaves A𝑛,𝑝 and B𝑛,𝑝 found in

Definition 3.2 below.

3.2. Definition and first examples. Throughout the present Section 3, we will work in

the following setting.

Setting 3.1. Let (𝑋, 𝐷) be a C-pair as in Definition 2.24 and let𝛾 : 𝑋 → 𝑋 be a𝑞-morphism.

Assume that the pairs (𝑋, 𝐷) and

(
𝑋,𝛾∗𝐷

)
are nc.

In view of the sample computations in Section 3.1, we hope that the following defini-

tion will not come as a surprise.

Definition 3.2 (Adapted tensors). Assume Setting 3.1. Given numbers 𝑛, 𝑝 ∈ N+, consider
the sheaves

A𝑛,𝑝 := O
𝑋

(
⌊𝑛 · 𝛾∗{𝐷}⌋

)
⊗ 𝛾∗ Sym

𝑛 Ω
𝑝

𝑋

(
log⌊𝐷⌋

)
B𝑛,𝑝 := Sym

𝑛 Ω
𝑝

𝑋
(log𝛾∗𝐷).

Observe that both are subsheaves of O
𝑋

(
𝛾∗𝐷

)
⊗

(
𝛾∗ Sym

𝑛 Ω
𝑝

𝑋

)
and define the bundle of

adapted (𝑛, 𝑝)-tensors as the intersection

Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 ) := A𝑛,𝑝 ∩ B𝑛,𝑝 .

Collectively, we refer to Sym
•
C Ω•

(𝑋,𝐷,𝛾 ) as the bundles of adapted tensors.

Definition 3.3 (Adapted differentials, cf. [CP19, Sect. 5.2]). Assume Setting 3.1. Given
a number 𝑝 ∈ N+, define the bundle of adapted 𝑝-forms as Ω

𝑝

(𝑋,𝐷,𝛾 ) := Sym
1

C Ω
𝑝

(𝑋,𝐷,𝛾 ) .
Collectively, we refer to Ω•

(𝑋,𝐷,𝛾 ) as the bundles of adapted differentials. The sheaf Ω1

(𝑋,𝐷,𝛾 )
is called C-cotangent bundle.

The remainder of Section 3 lists properties of Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 ) that will become relevant

later. The proofs are elementary but tedious, and will typically involve a computation in

local coordinates, or numerical arguments of the form ⌊𝛾∗𝐷⌋ ≥ 𝛾∗⌊𝐷⌋. To keep the size of

this (already long) paper within reasonable limits, we refrain from giving full proofs and

4
A compact complex manifold of algebraic dimension zero need not have any global covers at all!
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formulate a sequence of statements euphemistically called “observations”, that is, home-

work left for the reader. The first observation justifies the word “bundle” in Definitions 3.2

and 3.3.

Observation 3.4 (Local freeness). The sheaves Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 ) of Definition 3.2 are locally

free. □

The following examples illustrate the construction, expanding Definition 3.2 in a num-

ber of special cases.

Example 3.5 (Special cases). In Setting 3.1, assume that numbers 𝑛, 𝑝 ∈ N+
are given.

(3.5.1) If 𝑝 = dim𝑋 , then

Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 ) =
(
𝛾∗𝜔⊗𝑛

𝑋

)
⊗ O

𝑋

(
⌊𝑛 · 𝛾∗𝐷⌋

)
.

(3.5.2) If 𝐷 = 0, then Sym
𝑛
C Ω

𝑝

(𝑋,0,𝛾 ) = 𝛾
∗

Sym
𝑛 Ω

𝑝

𝑋
.

(3.5.3) If 𝛾 = Id𝑋 , then Ω
𝑝

(𝑋,𝐷,Id𝑋 ) = Ω
𝑝

𝑋

(
log⌊𝐷⌋

)
.

(3.5.4) If 𝛾 is strongly adapted and Branch(𝛾) ⊆ supp𝐷 , then

Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 ) = Sym
𝑛 Ω

𝑝

𝑋

(
log𝛾∗⌊𝐷⌋

)
.

Example 3.6 (Functions with adapted differential). In the setting of Definition 3.2, assume

that 𝛾 is a cover. Given a function

(3.6.1) 𝑓 ∈ 𝐻 0

(
𝑋, O

𝑋
(−Ramification𝛾)

)
,

that vanishes along the ramification divisor
5

of 𝛾 , an elementary computation in local

coordinates shows that the following statements are equivalent.

(3.6.2) The Kähler differential of 𝑓 is adapted,

𝑑 𝑓 ∈ 𝐻 0
(
𝑋, Ω1

(𝑋,𝐷,𝛾 )
)
⊆ 𝐻 0

(
𝑋, Ω1

𝑋
(log𝛾∗𝐷)

)
.

(3.6.3) The zero-divisor of the function 𝑓 satisfies the inequality

div 𝑓 ≥
∑︁

Δ
𝑋
⊆div 𝑓

multΔ
𝑋
𝛾∗Δ𝑋

multC,Δ𝑋
𝐷

· Δ
𝑋
,

where Δ𝑋 :=
(
𝛾∗Δ𝑋

)
red

and (finite)/∞ = 0.

Remark 3.7. Notice that (3.6.2) says nothing about the vanishing order of 𝑓 along divisors

Δ
𝑋

that lie over the support of ⌊𝐷⌋. In a similar vein, (3.6.3) says nothing about the

vanishing order of 𝑓 along divisors Δ
𝑋

outside the ramification locus.

3.3. Alternative description. In his seminal paper [Miy08], Miyaoka describes the C-

cotangent bundle in terms of the classic residue sequence for logarithmic differentials,

0 → Ω1

𝑋 (log⌊𝐷⌋) → Ω1

𝑋 (log𝐷) residue−−−−−→
⊕

𝑖 |𝑚𝑖<∞
O𝐷𝑖

→ 0.

An elementary computation in local coordinates shows that Miyaoka’s construction

agrees with Definition 3.2 above.

5
Recall from Notation 2.22 that the ramification divisor is reduced, so that 3.6.1 is a statement about the

vanishing locus of 𝑓 , but not about the order of vanishing.
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Observation 3.8 (Miyaoka’s description of the C-cotangent bundle, [Miy08, p. 412]). In

Setting 3.1, the C-cotangent bundle Ω1

(𝑋,𝐷,𝛾 ) ⊆ 𝛾∗Ω1

𝑋
(log𝐷) equals the kernel of the

following composed morphism,

𝛾∗Ω1

𝑋 (log𝐷)
𝛾∗

(residue)

−−−−−−−−→
⊕

𝑖 |𝑚𝑖<∞
𝛾∗O𝐷𝑖

Rem. 2.41

=
⊕

𝑖 |𝑚𝑖<∞
O𝛾∗𝐷𝑖

Rem. 2.40−−−−−−−→→
⊕

𝑖 |𝑚𝑖<∞
O⌈

1

𝑚𝑖
·𝛾∗𝐷𝑖

⌉.
This describes the C-cotangent bundle by means of the following exact sequence,

(3.8.1) 0 → Ω1

(𝑋,𝐷,𝛾 ) → 𝛾∗Ω1

𝑋 (log𝐷) →
⊕
𝑖

O⌈
1

𝑚𝑖
·𝛾∗𝐷𝑖

⌉ → 0.

As before, the notation in (3.8.1) follows the convention that
1

∞ = 0. □

3.4. Inclusions. The construction equips the bundles of adapted tensors with numerous

inclusions that we use throughout the paper. The following observation summarizes the

most important ones for later reference.

Observation 3.9 (Inclusions). Assume Setting 3.1. Given numbers 𝑛, 𝑝 ∈ N+
, there exist

natural inclusions as follows,

Sym
𝑛 Ω

𝑝

𝑋

(
log𝛾∗⌊𝐷⌋

)
Sym

𝑛 Ω
𝑝

𝑋

(
log𝛾∗𝐷

)
𝛾∗ Sym

𝑛 Ω
𝑝

𝑋
(log𝐷)

Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 ) Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 )

Sym
𝑛 Ω

𝑝

(𝑋,𝐷,𝛾 ) Sym
𝑛 Ω

𝑝

(𝑋,𝐷,𝛾 )

𝛾∗ Sym
𝑛 Ω

𝑝

𝑋
𝛾∗ Sym

𝑛 Ω
𝑝

𝑋
.

𝜄𝑛,𝑝

Note that all sheaves here are subsheaves of the quasi-coherent sheaf of meromorphic

tensors on 𝑋 , that is, M
𝑋
⊗ Sym

𝑛 Ω
𝑝

𝑋
. □

Observation 3.10 (Uniformization). Assume that the morphism 𝛾 : 𝑋 → 𝑋 of Setting 3.1

is an adapted cover and consider the morphisms

𝜄•,• : Sym
•
C Ω•

(𝑋,𝐷,𝛾 ) ↩→ Sym
• Ω•

𝑋

(
log𝛾∗⌊𝐷⌋

)
of Observation 3.9. Then, the following statements are equivalent.

(3.10.1) The morphism 𝛾 is a uniformization.

(3.10.2) There exist numbers 1 ≤ 𝑝 ≤ dim𝑋 and 1 ≤ 𝑛 such that 𝜄𝑛,𝑝 is isomorphic.

(3.10.3) For every pair of numbers 𝑝, 𝑛 ∈ N+
, the inclusion 𝜄𝑛,𝑝 is isomorphic. □

Remark 3.11. Observation 3.10 does not hold without the assumption that 𝛾 is adapted.

For a counterexample, observe that the identity map 𝛾 := Id𝑋 almost never uniformizes.

Yet, we have seen in Item (3.5.3) of Example 3.5 that Ω
𝑝

(𝑋,𝐷,Id𝑋 ) = Ω
𝑝

𝑋

(
log⌊𝐷⌋

)
for every

number 𝑝 .

3.5. Operations. Among all meromorphic differential forms, logarithmic forms are

characterized by the fact that the pole order does not change under exterior derivatives

and wedge products. The exterior derivatives and wedge products on Ω•
𝑋

(
log𝛾∗𝐷

)
there-

fore induce operations on the bundles of adapted differentials.
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Observation 3.12 (Wedge products and exterior derivatives). In Setting 3.1, observe that

the subsheaves

Ω•
(𝑋,𝐷,𝛾 )

𝜄1,•
⊆ Ω•

𝑋

(
log𝛾∗⌊𝐷⌋

)
are closed under wedge products and exterior derivatives. Given numbers 𝑝 and 𝑞, we

obtain natural operations

∧ : Ω
𝑝

(𝑋,𝐷,𝛾 ) × Ω
𝑞

(𝑋,𝐷,𝛾 ) → Ω
𝑝+𝑞
(𝑋,𝐷,𝛾 ) and 𝑑 : Ω

𝑝

(𝑋,𝐷,𝛾 ) → Ω
𝑝+1

(𝑋,𝐷,𝛾 ) . □

We turn to symmetric powers. The trivial observation that

⌊𝑛1 · 𝛾∗{𝐷}⌋ + ⌊𝑛2 · 𝛾∗{𝐷}⌋ ≤ ⌊(𝑛1 + 𝑛2) · 𝛾∗{𝐷}⌋, for all 𝑛1, 𝑛2 ∈ N
allows defining symmetric products on the bundles of adapted tensors that are compatible

with the products in the standard symmetric algebra Sym
• Ω•

𝑋

(
log𝛾∗𝐷

)
.

Observation 3.13 (Symmetric multiplication). In Setting 3.1, observe that the subsheaves

Sym
•
C Ω•

(𝑋,𝐷,𝛾 ) ⊆ Sym
• Ω•

𝑋

(
log𝛾∗⌊𝐷⌋

)
are closed under symmetric multiplication. Given numbers 𝑝 , 𝑛1, 𝑛2 ∈ N+

, we obtain

natural maps

Sym
𝑛1

C Ω
𝑝

(𝑋,𝐷,𝛾 ) × Sym
𝑛2

C Ω
𝑝

(𝑋,𝐷,𝛾 ) → Sym
𝑛1+𝑛2

C Ω
𝑝

(𝑋,𝐷,𝛾 )

and

Sym
𝑛1

Sym
𝑛2

C Ω
𝑝

(𝑋,𝐷,𝛾 ) ↩→ Sym
𝑛1 ·𝑛2

C Ω
𝑝

(𝑋,𝐷,𝛾 ) . □

Observation 3.14 (Adapted tensors on adapted covers). If the 𝑞-morphism 𝛾 of Setting 3.1

is adapted, then 𝛾∗{𝐷} is integral and

Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 ) = Sym
𝑛 Ω

𝑝

(𝑋,𝐷,𝛾 ) .

In particular, we find that the symmetric multiplication maps of Observation 3.13 are

surjective. □

3.6. Functoriality. Given a C-pair (𝑋, 𝐷) and two covers 𝑌1 ↠ 𝑋 and 𝑌2 ↠ 𝑋 , one

would often like to compare adapted tensors on 𝑌1 with those on 𝑌2. Typically, this

amounts to choosing one cover 𝑋 ↠ 𝑋 that dominates both 𝑌•, and then comparing the

adapted tensors on 𝑌• with those on 𝑋 . The following observation yields the necessary

comparison morphisms.

Observation 3.15 (Functoriality in 𝑞-morphisms). In the Setting 3.1, assume that the

morphism 𝛾 factors into a sequence of 𝑞-morphisms,

𝑋 𝑌 𝑋,𝛼

𝛾

𝛽

where

(
𝑌, 𝛽∗𝐷

)
is likewise nc. Given numbers 𝑛, 𝑝 ∈ N+

, there exists a commutative

diagram as follows,

𝛼∗ Sym
𝑛 Ω

𝑝

𝑌
(log 𝛽∗⌊𝐷⌋) Sym

𝑛 Ω
𝑝

𝑋

(
log𝛾∗⌊𝐷⌋

)
𝛼∗ Sym

𝑛
C Ω

𝑝

(𝑋,𝐷,𝛽 ) Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 ) .

d𝛼

inclusion 𝛼∗ (𝜄𝑛,𝑝 ) inclusion 𝜄𝑛,𝑝

□

Observation 3.16 (Functoriality in adapted morphisms). If the morphism 𝛽 of Obser-

vation 3.15 is adapted for (𝑋, 𝐷), then 𝛾 is likewise adapted. The natural morphisms

𝛼∗ Sym
•
C Ω•

(𝑋,𝐷,𝛽 ) ↩→ Sym
•
C Ω•

(𝑋,𝐷,𝛾 ) are isomorphic in this case. □
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Observation 3.15 asserts that the pull-back of an adapted tensor on 𝑌 is an adapted

tensor on 𝑋 . For future applications, the following observation notes that the converse is

also true: A meromorphic tensor on 𝑌 is adapted if and only if its pull-back is adapted on

𝑋 . The proof is an exercise in “pull-back and round up/round down” and uses the classic

fact that a tensor has logarithmic poles if and only if its pull-back has logarithmic poles.

Observation 3.17 (Test for adapted tensors, compare Lemma 2.23). In the setting of Ob-

servation 3.15, let 𝑛 and 𝑝 ∈ N+
be two numbers, let 𝑈 ⊆ img𝛼 ⊆ 𝑌 be open and let

𝜎 ∈
(
M

𝑌
⊗ Sym

𝑛 Ω
𝑝

𝑌

)
(𝑈 ) be any meromorphic tensor on 𝑈 . Then, the following are

equivalent.

(3.17.1) The section 𝜎 is an adapted tensor. More precisely: the meromorphic tensor 𝜎 is

a section of the subsheaf Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛽 ) ⊆ M
𝑌
⊗ Sym

𝑛 Ω
𝑝

𝑌
.

(3.17.2) The pull-back of 𝜎 is an adapted tensor. More precisely: the meromorphic tensor

(d𝛼) (𝜎) is a section of the subsheaf Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 ) ⊆ M
𝑋
⊗ Sym

𝑛 Ω
𝑝

𝑋
. □

Consequence 3.18 (Trace morphism). In the setting of Observation 3.15, the trace map

𝛼∗Ω
•
𝑋

(
log𝛾∗𝐷

) trace−−−→ Ω•
𝑌
(log 𝛽∗𝐷)

maps adapted differentials to adapted differentials. More precisely, there exist commut-

ative diagrams as follows,

𝛼∗Ω•
(𝑋,𝐷,𝛾 ) 𝛼∗Ω•

𝑋

(
log𝛾∗𝐷

)
Ω•

(𝑋,𝐷,𝛽 ) Ω•
𝑌
(log 𝛽∗𝐷)

Obs. 3.9

restr. of trace trace

Obs. 3.9 □

We remark that Consequence 3.18 has no analogue for higher-order tensors. Already in

the simplest case where 𝛾 : A1 → A1
is a uniformization of the pair (𝑋, 𝐷) =

(
A1, 1

2
· {0}

)
that factorizes as

A1︸︷︷︸
=𝑋

A1︸︷︷︸
=𝑌

A1︸︷︷︸
=𝑋

,
𝛼=𝛾

𝑧 ↦→𝑧2

𝛽=Id

the Galois-invariant two-tensor

𝑑𝑧 · 𝑑𝑧 ∈ 𝐻 0
(
𝑋, Sym

2

C Ω1

(𝑋,𝐷,𝛾 )
)
= 𝐻 0

(
A1, Sym

2 Ω1

A1

)
does not induce any section of Sym

2

C Ω1

(𝑋,𝐷,𝛽 ) = Sym
2 Ω1

A1
.

3.7. Galois linearization. All sheaves that we have discussed in Definition 3.2 are lin-

earized with respect to the action of the relative automorphism group AutO
(
𝑋/𝑋

)
. If

the morphism 𝛾 is Galois, then all sheaves are Galois-linearized. We refer the reader

to [GKKP11, Appendix A and references there] for more on 𝐺-sheaves and 𝐺-invariant

push-forward.

Observation 3.19 (Linearisation). Assume Setting 3.1 and write 𝐺 := AutO
(
𝑋/𝑋

)
for the

relative automorphism group. Then, all sheaves Sym
•
C Ω•

(𝑋,𝐷,𝛾 ) of Definition 3.2 carry

natural 𝐺-linearisations that are compatible with the natural 𝐺-linearisations of

Sym
𝑛 𝛾∗Ω

𝑝

𝑋
, 𝛾∗ Sym

𝑛 Ω
𝑝

𝑋
(log𝐷), Sym

𝑛 Ω
𝑝

𝑋

(
log𝛾∗𝐷

)
,

Sym
𝑛 Ω

𝑝

𝑋

(
log𝛾∗⌊𝐷⌋

)
.

The inclusions of Observation 3.9 are morphisms of 𝐺-sheaves. □
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Observation 3.19 applies most prominently in settings where𝛾 is Galois. It also applies

in the setting of Observation 3.15, effectively allowing us to compare adapted tensors on

𝑋 with those on 𝑌 .

Lemma 3.20 (Invariant push-forward). In the setting of Observation 3.15, assume that the
𝑞-morphisms 𝛼 , 𝛽 and 𝛾 are covers, and that 𝛼 is Galois with group 𝐺 . Given numbers 𝑛,
𝑝 ∈ N+, the natural morphism between 𝐺-invariant push-forward sheaves induced by the
bottom row of the commutative diagram in Observation 3.15,

Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛽 ) =
(
𝛼∗𝛼

∗
Sym

𝑛
C Ω

𝑝

(𝑋,𝐷,𝛽 )

)𝐺
↩→

(
𝛼∗ Sym

𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 )

)𝐺
,

is isomorphic.

Proof. Given an open set𝑈 ⊆ 𝑌 and a 𝐺-invariant adapted tensor on 𝑋 ,

𝜎 ∈ Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 ) (𝛼
−1𝑈 ),

we need to find an adapted tensor 𝜏 ∈ Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛽 ) (𝑈 ) whose pull-back equals 𝜎 . To

this end, consider the inclusion

(3.20.1) Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛾 ) ↩→ 𝛾∗ Sym
𝑛 Ω

𝑝

𝑋
(log𝐷)

discussed in Observation 3.9. We have remarked in Observation 3.19 that (3.20.1) is an

inclusion of 𝐺-linearized sheaves; the 𝐺-invariant adapted tensor 𝜎 will therefore define

a 𝐺-invariant section

𝜎 ′ ∈ 𝛾∗ Sym
𝑛 Ω

𝑝

𝑋
(log𝐷) (𝛼−1𝑈 ) = 𝛼∗𝛽∗ Sym

𝑛 Ω
𝑝

𝑋
(log𝐷) (𝛼−1𝑈 ) .

In this 𝐺-invariant setting, it immediately equips us with an associated section

𝜏 ′ ∈ 𝛽∗ Sym
𝑛 Ω

𝑝

𝑋
(log𝐷) (𝑈 ),

whose pull-back equals 𝜎 ′. In order to conclude, it remains to show that 𝜏 ′ is an adapted

tensor. Equivalently: It remains to show that 𝜏 ′ really a section of the subsheaf

Sym
𝑛
C Ω

𝑝

(𝑋,𝐷,𝛽 ) ↩→ 𝛽∗ Sym
𝑛 Ω

𝑝

𝑋
(log𝐷).

This is exactly the implication (3.17.2) ⇒ (3.17.1) of Observation 3.17 above. □

3.8. Chern classes. Observation 3.8 describes the C-cotangent bundle by means of an

exact sequence that allows computing Chern classes. For simplicity, we restrict ourselves

to the compact setting, where Chern classes for coherent analytic sheaves can be defined

in rational cohomology, as explained [TT86] and briefly recalled in [Gri10, Sect. 1]. In

settings where more general or more refined classes exist, the computations described

here will work without change.

Observation 3.21 (Total Chern class of the C-cotangent bundle). In Setting 3.1, assume

that the 𝑞-morphism 𝛾 is adapted. Then,⌈
1

𝑚𝑖
· 𝛾∗𝐷𝑖

⌉
= 1

𝑚𝑖
· 𝛾∗𝐷𝑖 , for every 𝑖 .

If 𝑋 and 𝑋 are compact, then an elementary computation applying the Whitney formula

to Sequence (3.8.1) reveals the total Chern class of Ω1

(𝑋,𝐷,𝛾 ) as

𝑐

(
Ω1

(𝑋,𝐷,𝛾 )

)
= 𝑐

(
𝛾∗Ω1

𝑋 (log𝐷)
)
·

∏
𝑖 |𝑚𝑖<∞

𝑐

(
O 1

𝑚𝑖
·𝛾∗𝐷𝑖

)−1

= 𝛾∗

(
𝑐
(
Ω1

𝑋

)
·
∏
𝑖

(
𝑚𝑖−1

𝑚𝑖
· 𝑐

(
O𝐷𝑖

)
+ 1

𝑚𝑖

))
∈ 𝐻 ∗ (𝑋, Q)

.
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In particular, we find that

𝑐1

(
Ω1

(𝑋,𝐷,𝛾 )
)
= 𝛾∗𝑐1

(
𝐾𝑋 + 𝐷

)
∈ 𝐻 ∗ (𝑋, Q)

.

Definition 3.22 (Total C-Chern class of C-cotangent bundle). If (𝑋, 𝐷) is a compact nc
C-pair, write

𝑐

(
Ω1

(𝑋,𝐷 )

)
:= 𝑐

(
Ω1

𝑋

)
·
∏
𝑖

(
𝑚𝑖−1

𝑚𝑖
· 𝑐

(
O𝐷𝑖

)
+ 1

𝑚𝑖

)
∈ 𝐻 ∗ (𝑋, Q)

and refer to this quantity as the total C-Chern class of the C-cotangent bundle for (𝑋, 𝐷).
Chern classes of C-cotangent bundles have been studied at length in the literature.

While the surface case has already been considered in Miyaoka’s classic paper [Miy08,

Sect. 3], generalizations to higher dimensions appear throughout the recent literature,

including [GT22, Sects. 2 and 3] and [CDR20, Sect. 2.6].

3.9. Residue sequences for the C-cotangent bundle. In view of Miyaoka’s descrip-

tion of the C-cotangent bundle, it is perhaps not surprising that the classic residue– and

normal bundle sequences for logarithmic differentials have direct counterparts in the set-

ting of C-pairs.

Observation 3.23 (C-residue sequence). In Setting 3.1, assume that the 𝑞-morphism 𝛾 is

adapted. The alternative description of the C-cotangent sheaf in Observation 3.8 expands

to the following commutative diagram with exact rows and columns,

𝛾∗Ω1

𝑋

(
log⌊𝐷⌋

)
Ω1

(𝑋,𝐷,𝛾 )
⊕

𝑖 |𝑚𝑖<∞
J 1

𝑚𝑖
· 𝛾∗𝐷𝑖

/
J𝛾∗𝐷𝑖

𝛾∗Ω1

𝑋

(
log⌊𝐷⌋

)
𝛾∗Ω1

𝑋
(log𝐷)

⊕
𝑖 |𝑚𝑖<∞

O𝛾∗𝐷𝑖

0

⊕
𝑖 |𝑚𝑖<∞

O⌈
1

𝑚𝑖
·𝛾∗𝐷𝑖

⌉ ⊕
𝑖 |𝑚𝑖<∞

O 1

𝑚𝑖
· 𝛾∗𝐷𝑖

.

Its top row is called the C-residue sequence of the pair (𝑋, 𝐷) and the 𝑞-morphism 𝛾 .

3.10. Normal bundle sequences for the C-cotangent bundle. In contrast to the C-

residue sequence, the C-normal bundle sequences are a little more delicate to write down,

because we need to choose compatible submanifolds 𝑌 ⊊ 𝑋 and 𝑌 ⊊ 𝑋 . For simplicity,

we stick to the simplest setting where 𝑌 and 𝑌 are of pure codimension one, and consider

the cases where 𝑌 ⊄ supp𝐷 and 𝑌 ⊂ supp𝐷 separately. The reader will observe how the

C-normal bundle sequences in Observations 3.25 and 3.26 interpolate between the classic

and the logarithmic case.

Setting 3.24 (C-normal bundle sequence). In Setting 3.1, assume that the 𝑞-morphism 𝛾 is

adapted. Let 𝑌 ⊊ 𝑋 and 𝑌 ⊆ 𝛾−1 (𝑌 ) ⊊ 𝑋 be smooth prime divisors, such that 𝑌 + 𝐷 and

𝑌 + 𝛾∗𝐷 have nc support in 𝑋 and 𝑋 , respectively.

Observation 3.25 (C-Normal bundle sequence, I). In Setting 3.24, assume that𝑌 ⊄ supp𝐷 .

Write

𝐷𝑌 := 𝐷 |𝑌 ∈ QDiv(𝑌 )
and observe that (𝑌, 𝐷𝑌 ) is again a C-pair. The restricted morphism 𝛾 |

𝑌
: 𝑌 → 𝑌 is again

an adapted𝑞-morphism for the pair (𝑌, 𝐷𝑌 ) that satisfies the assumptions of Setting 3.1, so

that a well-defined C-cotangent bundle Ω1

(𝑌,𝐷𝑌 ,𝛾 |𝑌 ) exists. Further, there exists a natural

sequence

(3.25.1) 0 → O
𝑋

(
𝛾∗𝑌

)
|
𝑌
→ Ω1

(𝑋,𝐷,𝛾 ) |𝑌 → Ω1

(𝑌,𝐷𝑌 ,𝛾 |𝑌 ) → 0.
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Observation 3.26 (C-Normal bundle sequence, II). In Setting 3.24, assume that𝑌 ⊆ supp𝐷 ,

so that 𝑌 = 𝐷𝑖0 for one index 𝑖0. Write

𝐷𝑌 :=

(
𝐷 − 𝑚𝑖

0
−1

𝑚𝑖
0

𝐷𝑖0

)���
𝑌
∈ QDiv(𝑌 )

and observe that (𝑌, 𝐷𝑌 ) is again a C-pair. The restricted morphism 𝛾 |
𝑌

: 𝑌 → 𝑌 is again

an adapted 𝑞-morphism for the pair (𝑌, 𝐷𝑌 ) that satisfies the assumptions of Setting 3.1,

so that a well-defined C-cotangent bundle Ω1

(𝑌,𝐷𝑌 ,𝛾 |𝑌 ) exists. With the understanding that

1

∞ = 0, there exists a natural sequence

(3.26.1) 0 → O
𝑋

(
1

𝑚𝑖
0

· 𝛾∗𝐷𝑖0

)
|
𝑌
→ Ω1

(𝑋,𝐷,𝛾 ) |𝑌 → Ω1

(𝑌,𝐷𝑌 ,𝛾 |𝑌 ) → 0.

Notation 3.27 (C-normal bundle sequence). We refer to Sequences (3.25.1) and (3.26.1) as

C-normal bundle sequences of the pair (𝑋, 𝐷).

4. Adapted reflexive tensors

Given a C-pair (𝑋, 𝐷) and a 𝑞-morphism 𝛾 : 𝑋 → 𝑋 , Section 3 defined adapted tensors

on 𝑋 , assuming that the spaces 𝑋 and 𝑋 are smooth and that the divisors 𝐷 and 𝛾∗𝐷
have normal crossing support. While we hope that the reader finds the resulting notions

interesting, we have to admit that the strong smoothness assumptions limit the theory’s

usefulness in practise.

• Pairs (𝑋, 𝐷) that appear in classification and birational geometry are hardly ever

nc. Practically relevant pairs will typically be klt and might be locally uniformizable

at best.

• Even if (𝑋, 𝐷) is nc, most of the covering spaces that one might naturally con-

sider will typically be singular. Observe that smoothness is not preserved by fibre-

product constructions.

This section extends the constructions of Section 3 to the singular case, replacing “ad-

apted tensors” by the “adapted reflexive tensors” that we define in the next step. The

construction also generalize the “sheaves of reflexive differentials” of Notation 2.6 that

have been useful in the study of singular varieties that appear in Minimal Model Theory,

[GKKP11, KS21].

4.1. Definition and first examples. The present Section 4 works in the following set-

ting and uses the following notation.

Setting 4.1. Let (𝑋, 𝐷) be a C-pair as in Definition 2.24, where𝐷 is written as

∑
𝑖
𝑚𝑖−1

𝑚𝑖
·𝐷𝑖 .

Let 𝛾 : 𝑋 → 𝑋 be a 𝑞-morphism.

Notation 4.2. In Setting 4.1, recall from Reminder 2.19 that img𝛾 ⊆ 𝑋 is open. Let 𝑋 + ⊆
img𝛾 be the maximal open set such that the pairs (𝑋, 𝐷) and

(
𝑋,𝛾∗𝐷

)
are nc over𝑋 +

. Set

𝐷+
:= 𝐷 ∩ 𝑋 + ∈ QDiv(𝑋 +) and 𝑋 +

:= 𝛾−1 (𝑋 +).

Observe that the subset 𝑋 + ⊆ 𝑋 is big and consider the restriction 𝛾+ : 𝑋 + → 𝑋 +
and the

inclusion 𝜄 : 𝑋 + → 𝑋 .

Observe that the pair (𝑋 +, 𝐷+) and the morphism 𝛾+ satisfy the assumptions made

in Setting 3.1 above. Definition 3.2 therefore equips us with bundles Sym
•
C Ω•

(𝑋 +,𝐷+,𝛾+ )
defined on 𝑋 +

. We extend these bundles from 𝑋 +
to a quasi-coherent sheaves that are

defined on all of 𝑋 .
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Definition 4.3 (Adapted reflexive tensors differentials, compare Definition 3.2). Assume
Setting 4.1. Given numbers 𝑛, 𝑝 ∈ N+, define the sheaf of adapted reflexive (𝑛, 𝑝)-tensors

as
Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) := 𝜄∗ Sym

𝑛
C Ω

𝑝

(𝑋 +,𝐷+,𝛾+ ) .

Collectively, we refer to Sym
[•]
C Ω [•]

(𝑋,𝐷,𝛾 ) as the sheaves of adapted reflexive tensors.

Definition 4.4 (Adapted reflexive differentials, compare Definition 3.3). Assume Set-
ting 4.1. Given a number 𝑝 ∈ N+, define the sheaf of adapted reflexive 𝑝-forms as

Ω
[𝑝 ]
(𝑋,𝐷,𝛾 ) := Sym

[1]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) .

Collectively, we refer to Ω [•]
(𝑋,𝐷,𝛾 ) as the sheaves of adapted reflexive differentials. The sheaf

Ω [1]
(𝑋,𝐷,𝛾 ) is called C-cotangent sheaf.

If (𝑋, 𝐷) and

(
𝑋,𝛾∗𝐷

)
are nc, then the sheaves of adapted reflexive tensors agree with

the bundles constructed in Definition 3.2 and are thus locally free. In general, we show

that the sheaves of adapted reflexive tensors are reflexive.

Proposition 4.5 (Reflexivity, compare Observation 3.4). The sheaves Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) of

Definition 4.3 are reflexive.

The reader coming from algebraic geometry might find the following proof of Proposi-

tion 4.5 surprisingly complicated. We recall that in the analytic setting, vector bundles on

big open subsets can generally not be extended to coherent sheaves on the whole space

and refer the reader to [Ser66, p. 372] for an elementary yet sobering example.

Proof of Proposition 4.5. It follows from Observation 2.15 that the open subset 𝑋 + ⊆ 𝑋 of

Notation 4.2 is big. With that in place, recall [Ser66, Prop. 7]: To prove that the sheaves

Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) are reflexive, it suffices to find coherent sheaves F𝑛,𝑝 on𝑋 whose restric-

tions to 𝑋 +
agree with the bundles of (𝑛, 𝑝)-tensors,

(4.5.1) F𝑛,𝑝 |𝑋 + � Sym
𝑛
C Ω

𝑝

(𝑋 +,𝐷+,𝛾+ ) .

In order to construct F𝑛,𝑝 , choose a strong log resolution
6 𝜋 : 𝑌 → 𝑋 of the pair (𝑋, 𝐷)

and consider the strict transform Δ := 𝜋−1

∗ 𝐷 . Choosing a strong log resolution of the nor-

malized fibre product, we obtain a commutative diagram of dominant morphisms between

normal analytic varieties,

𝑌 𝑋

𝑌 𝑋,

𝜋 , proper birational

𝛿 𝛾

𝜋 , strong log resolution

where 𝜋 and 𝜋 are isomorphic over 𝑋 +
and 𝑋 +

, respectively. In analogy to Definition 3.2,

write

A ′
𝑛,𝑝 := O

𝑌

(
⌊𝑛 · 𝛿∗{Δ}⌋

)
⊗ 𝛿∗ Sym

𝑛 Ω
𝑝

𝑌

(
log⌊Δ⌋

)
B′

𝑛,𝑝 := Sym
𝑛 Ω

𝑝

𝑌
(log𝛾∗Δ).

Observe that both are subsheaves of O
𝑌

(
𝛿∗Δ

)
⊗

(
𝛿∗ Sym

𝑛 Ω
𝑝

𝑌

)
and define

F ′
𝑛,𝑝 := A ′

𝑛,𝑝 ∩ B′
𝑛,𝑝 .

6
A strong log resolution is a proper morphism 𝜋 : 𝑌 → 𝑋 where 𝑌 is smooth, where 𝜋 is isomorphic over

the maximal open set where (𝑋,𝐷 ) is nc, and where the 𝜋-exceptional set 𝐸 ⊂ 𝑌 and 𝐸 ∪𝜋−1 (𝑋 \𝑈 ) are both

of pure codimension one with nc support.



C-PAIRS AND THEIR MORPHISMS 21

We can then take F𝑛,𝑝 := 𝜋∗F ′
𝑛,𝑝 , which is coherent because 𝜋 is proper. Since 𝜋 and 𝜋

are isomorphic over 𝑋 +
and 𝑋 +

, condition (4.5.1) holds by construction. □

In analogy with Example 3.5, we highlight a few special cases where the sheaves of

adapted reflexive tensors take a particularly simple form.

Example 4.6 (Special cases, compare Example 3.5). In Setting 4.1, assume that numbers

𝑛, 𝑝 ∈ N+
are given.

(4.6.1) If 𝑝 = dim𝑋 , then

Sym
[𝑛]
C Ω [dim𝑋 ]

(𝑋,𝐷,𝛾 ) =
( (
𝛾 [∗]𝜔⊗𝑛

𝑋

)
⊗ O

𝑋

(
⌊𝑛 · 𝛾∗𝐷⌋

) )∨∨
.

(4.6.2) If 𝐷 = 0, then Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,0,𝛾 ) = 𝛾

[∗]
Sym

[𝑛] Ω
[𝑝 ]
𝑋

.

(4.6.3) If 𝛾 = Id𝑋 , then Ω
[𝑝 ]
(𝑋,𝐷,Id𝑋 ) = Ω

[𝑝 ]
𝑋

(
log⌊𝐷⌋

)
.

(4.6.4) If 𝛾 is strongly adapted and Branch(𝛾) ⊆ supp𝐷 , then

Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) = Sym

[𝑛] Ω
[𝑝 ]
𝑋

(
log𝛾∗⌊𝐷⌋

)
.

(4.6.5) If 𝛾 uniformizes, then

Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) = Sym

𝑛 Ω
𝑝

𝑋

(
log𝛾∗⌊𝐷⌋

)
.

Remark 4.7 (Reflexive hull in (4.6.1)). The double dual on the right side of (4.6.1) is ne-

cessary, as the tensor product of two reflexive sheaves will generally not be reflexive and

might even contain torsion. If a canonical divisor 𝐾𝑋 exists on 𝑋 , then (4.6.1) simplifies

to

Sym
[𝑛]
C Ω [dim𝑋 ]

(𝑋,𝐷,𝛾 ) = O
𝑋

(
⌊𝑛 · 𝛾∗ (𝐾𝑋 + 𝐷)⌋

)
.

4.2. Inclusions. By construction, the observations in Section 3 have direct analogues for

the sheaves of adapted reflexive tensors. For later reference and for the reader’s conveni-

ence, we include full statements, even though the text does become somewhat repetitive

and perhaps a little tiring.

Observation 4.8 (Inclusions, compare Observation 3.9). Assume Setting 4.1. Given num-

bers 𝑛, 𝑝 ∈ N+
, there exist natural inclusions as follows,

Sym
[𝑛] Ω

[𝑝 ]
𝑋

(
log𝛾∗⌊𝐷⌋

)
Sym

[𝑛] Ω
[𝑝 ]
𝑋

(
log𝛾∗𝐷

)
𝛾 [∗] Sym

[𝑛] Ω
[𝑝 ]
𝑋

(log𝐷)

Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 )

Sym
[𝑛] Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) Sym

[𝑛] Ω
[𝑝 ]
(𝑋,𝐷,𝛾 )

𝛾 [∗] Sym
[𝑛] Ω

[𝑝 ]
𝑋

𝛾 [∗] Sym
[𝑛] Ω

[𝑝 ]
𝑋
.

𝜄𝑛,𝑝

Note that all sheaves here are subsheaves of the quasi-coherent sheaf of meromorphic

reflexive tensors on 𝑋 , that is, M
𝑋
⊗ Sym

[𝑛] Ω
[𝑝 ]
𝑋

.
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Proof. Like nearly every other statement in the remainder of the present Section 4, the

proof follows from the observation that the subset 𝑋 + ⊆ 𝑋 introduced in Setting 4.1 and

Notation 4.2 is big and that 𝑋 is normal. If A and B are reflexive sheaves on 𝑋 , this

implies that the natural restriction morphisms

𝐻 0
(
𝑋, A

)
→ 𝐻 0

(
𝑋 +, A |

𝑋 +
)

and Hom
𝑋

(
A , B

)
→ Hom

𝑋 +
(
A |

𝑋 + , B |
𝑋 +

)
are isomorphic, [BS76, Cor. 3.15] and [Ser66]. Observation 3.9 therefore implies the claim.

□

Observation 4.9 (Uniformization, compare Observation 3.10). Assume that the morphism

𝛾 : 𝑋 → 𝑋 of Setting 4.1 is an adapted cover and that the pair

(
𝑋, (𝛾∗⌊𝐷⌋)reg

)
is nc.

Consider the morphisms

(4.9.1) 𝜄•,• : Sym
[•]
C Ω [•]

(𝑋,𝐷,𝛾 ) ↩→ Sym
[•] Ω [•]

𝑋

(
log𝛾∗⌊𝐷⌋

)
of Observation 4.8. Then, the following statements are equivalent.

(4.9.2) The morphism 𝛾 is a uniformization.

(4.9.3) There exist numbers 1 ≤ 𝑝 ≤ dim𝑋 and 1 ≤ 𝑛 such that 𝜄𝑛,𝑝 is isomorphic.

(4.9.4) For every pair of numbers 𝑝, 𝑛 ∈ N+
, the inclusion 𝜄𝑛,𝑝 is isomorphic.

Proof. By construction of the morphism (4.9.1), Items (4.9.3) and Items (4.9.4) is equivalent

the analogous statements for the morphisms

𝜄+•,• : Sym
•
C Ω•

(𝑋 +,𝐷+,𝛾+ ) ↩→ Sym
• Ω•

𝑋 +

(
log(𝛾+)∗⌊𝐷+⌋

)
discussed in Observation 3.9. Observation 3.10 therefore implies that Items (4.9.3) and

(4.9.4) are each equivalent to the assertion that 𝛾+ uniformizes. On the other hand, the

assumption that

(
𝑋, (𝛾∗⌊𝐷⌋)reg

)
is nc allows reformulating (4.9.2) as follows,

𝛾 uniformizes (𝑋, 𝐷) ⇔ Branch𝛾 ⊆ supp𝐷 and 𝛾 strongly adapted Def. 2.28

⇔ Branch𝛾+ ⊆ supp𝐷+
and 𝛾+strongly adapted 𝑋 + ⊆ 𝑋 big

⇔ 𝛾+ uniformizes (𝑋 +, 𝐷+) Def. 2.28.

For the second equivalence, recall from Notation 2.22 that Branch𝛾 refers to the branch

divisor and not to the branch locus, which might contain components of high codimen-

sion. □

4.3. Operations. With the minor difference highlighted in Warning 4.13 below, the op-

erations on adapted tensors introduced in Section 3.5 extend to identical operations on

adapted reflexive tensors.

Observation 4.10 (Reflexive wedge products and exterior derivatives, compare Observa-

tion 3.12). In Setting 4.1, observe that the subsheaves

Ω [•]
(𝑋,𝐷,𝛾 )

𝜄1,•
⊆ Ω [•]

𝑋

(
log𝛾∗⌊𝐷⌋

)
are closed under reflexive wedge products and exterior derivations. Given numbers 𝑝 and

𝑞, we obtain natural operations

∧ : Ω
[𝑝 ]
(𝑋,𝐷,𝛾 ) × Ω

[𝑞 ]
(𝑋,𝐷,𝛾 ) → Ω

[𝑝+𝑞 ]
(𝑋,𝐷,𝛾 ) and 𝑑 : Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) → Ω

[𝑝+1]
(𝑋,𝐷,𝛾 ) . □

Observation 4.11 (Reflexive symmetric multiplication, compare Observation 3.13). In Set-

ting 4.1, observe that the subsheaves

Sym
[•]
C Ω [•]

(𝑋,𝐷,𝛾 ) ⊆ Sym
[•] Ω [•]

𝑋

(
log𝛾∗⌊𝐷⌋

)
are closed under symmetric multiplication. Given numbers 𝑝 , 𝑛1, 𝑛2 ∈ N+

, we obtain

natural maps

Sym
[𝑛1 ]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) × Sym

[𝑛2 ]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) → Sym

[𝑛1+𝑛2 ]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 )
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and

Sym
[𝑛1 ]

Sym
[𝑛2 ]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) ↩→ Sym

[𝑛1 ·𝑛2 ]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) . □

Observation 4.12 (Adapted reflexive tensors on adapted covers, compare Observation 3.14).
If the 𝑞-morphism 𝛾 of Setting 4.1 is adapted, then 𝛾∗{𝐷} is integral and

Sym
[𝑛]
C Ω

𝑝

(𝑋,𝐷,𝛾 ) = Sym
[𝑛] Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) for all 𝑝, 𝑛 ∈ N+. □

Warning 4.13 (No surjectivity in Observation 4.12). The sheaves Ω [•]
(𝑋,𝐷,𝛾 ) in Observa-

tion 4.12 need not be locally free. The natural morphisms

Sym
• Ω [•]

(𝑋,𝐷,𝛾 ) → Sym
[•] Ω [•]

(𝑋,𝐷,𝛾 )

are neither injective nor surjective in general; notice that the left side might well contain

torsion! In contrast to Observation 3.13, we cannot conclude that the symmetric multi-

plication maps of Observation 4.10 are surjective.

4.4. Functoriality. The functoriality statements of Section 3.6 also have direct ana-

logues. In line with Warning 4.13 above, there is a caveat here, stemming from the fact

that the reflexive hull construction does not commute with pull-back. We highlight this

issue in Warning 4.16, as it will become central when we define and discuss morphisms

of C-pairs in Section 7ff, in the second part of this paper.

Observation 4.14 (Functoriality in 𝑞-morphisms, compare Observation 3.15). In Set-

ting 4.1, assume that the morphism 𝛾 factors into a sequence of 𝑞-morphisms,

𝑋 𝑌 𝑋 .𝛼

𝛾

𝛽

Given numbers 𝑛, 𝑝 ∈ N+
, there exists a commutative diagram as follows,

𝛼 [∗]
Sym

[𝑛] Ω
[𝑝 ]
𝑌

(log 𝛽∗⌊𝐷⌋) Sym
[𝑛] Ω

[𝑝 ]
𝑋

(
log𝛾∗⌊𝐷⌋

)
𝛼 [∗]

Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛽 ) Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) .

equals d𝛼 over nc locus

inclusion 𝛼 [∗] (𝜄𝑛,𝑝 ) inclusion 𝜄𝑛,𝑝

□

Observation 4.15 (Functoriality in adapted morphisms, compare Observation 3.16). If the

morphism 𝛽 of Observation 4.14 is adapted for (𝑋, 𝐷), then 𝛾 is likewise adapted. The

natural morphisms 𝛼 [∗]
Sym

[•]
C Ω [•]

(𝑋,𝐷,𝛽 ) ↩→ Sym
[•]
C Ω [•]

(𝑋,𝐷,𝛾 ) are isomorphic in this case.

□

Warning 4.16 (Reflexive pull-back in the functoriality statement). In the setting of Obser-

vation 4.14, there exist natural sheaf morphisms

(4.16.1) 𝛼∗ Sym
[•]
C Ω [•]

(𝑋,𝐷,𝛽 ) → 𝛼 [∗]
Sym

[•]
C Ω [•]

(𝑋,𝐷,𝛽 )

that are however neither injective nor surjective in general; notice that𝛼∗ Sym
[•]
C Ω [•]

(𝑋,𝐷,𝛽 )
might well contain torsion! This will become important. For later reference, we note a

few settings where (4.16.1) is isomorphic indeed.

(4.16.2) The morphism (4.16.1) is isomorphic if Sym
[•]
C Ω [•]

(𝑋,𝐷,𝛽 ) is locally free.

(4.16.3) The morphism (4.16.1) is isomorphic if 𝛼 is flat.

On the positive side, observe that if the 𝑞-morphism 𝛽 is adapted and Ω [•]
(𝑋,𝐷,𝛽 ) is locally

free, then

Sym
[•]
C Ω [•]

(𝑋,𝐷,𝛽 )
Obs. 4.12

= Sym
[•] Ω [•]

(𝑋,𝐷,𝛽 )
loc. free

= Sym
• Ω [•]

(𝑋,𝐷,𝛽 )

is locally free, so that Item (4.16.2) applies.
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As in Section 3.6, we note that a partial converse of Observation 4.14 holds true.

Observation 4.17 (Test for adapted reflexive tensors, compare Observation 3.17). In the

setting of Observation 4.14, let 𝑛 and 𝑝 ∈ N+
be two numbers, let𝑈 ⊆ img𝛼 ⊆ 𝑌 be open

and let 𝜎 ∈
(
M

𝑌
⊗ Sym

[𝑛] Ω
[𝑝 ]
𝑌

)
(𝑈 ) be any meromorphic reflexive tensor on 𝑈 . Then,

the following are equivalent.

(4.17.1) The section 𝜎 is an adapted reflexive tensor. More precisely: the meromorphic

reflexive tensor 𝜎 is a section of the subsheaf

Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛽 ) ⊆ M

𝑌
⊗ Sym

[𝑛] Ω
[𝑝 ]
𝑌
.

(4.17.2) The pull-back of 𝜎 is an adapted reflexive tensor. More precisely: the mero-

morphic reflexive tensor (d𝛼) (𝜎) is a section of the subsheaf

Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) ⊆ M

𝑌
⊗ Sym

[𝑛] Ω
[𝑝 ]
𝑋
. □

Consequence 4.18 (Trace morphism, compare Consequence 3.18). In the setting of Obser-

vation 4.14, the trace map

𝛼∗Ω
[•]
𝑋

(
log𝛾∗𝐷

) trace−−−→ Ω [•]
𝑌

(log 𝛽∗𝐷)

maps adapted reflexive differentials to adapted reflexive differentials. More precisely,

there exist commutative diagrams as follows,

𝛼∗Ω
[•]
(𝑋,𝐷,𝛾 ) 𝛼∗Ω

[•]
𝑋

(
log𝛾∗𝐷

)
Ω [•]

(𝑋,𝐷,𝛽 ) Ω [•]
𝑌

(log 𝛽∗𝐷)

Obs. 4.8

restr. of trace trace

Obs. 4.8 □

4.5. Galois linearization. Unsurprisingly, the linearization morphisms discussed in

Section 3.7 also extend from 𝑋 +
to 𝑋 .

Observation 4.19 (Linearisation, compare Observation 3.19). Assume Setting 4.1 and write

𝐺 := AutO
(
𝑋/𝑋

)
for the relative automorphism group. Then, all sheaves Sym

[•]
C Ω [•]

(𝑋,𝐷,𝛾 )
of Definition 4.3 carry natural 𝐺-linearisations that are compatible with the natural 𝐺-

linearisations of

Sym
[𝑛] 𝛾 [∗]Ω

[𝑝 ]
𝑋
, 𝛾 [∗] Sym

[𝑛] Ω
[𝑝 ]
𝑋

(log𝐷), Sym
[𝑛] Ω

[𝑝 ]
𝑋

(
log𝛾∗𝐷

)
,

Sym
[𝑛] Ω

[𝑝 ]
𝑋

(
log𝛾∗⌊𝐷⌋

)
.

The inclusions of Observation 4.8 are morphisms of 𝐺-sheaves. □

Lemma 4.20 (Invariant push-forward, compare Lemma 3.20). In the setting of Observa-
tion 4.14, assume that the 𝑞-morphisms 𝛼 , 𝛽 and 𝛾 are covers, and that 𝛼 is Galois with group
𝐺 . Given numbers 𝑛, 𝑝 ∈ N+, the natural morphism between 𝐺-invariant push-forward
sheaves induced by the bottom row of the commutative diagram in Observation 4.14,

(4.20.1) Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛽 ) =

(
𝛼∗𝛼

[∗]
Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛽 )

)𝐺
↩→

(
𝛼∗ Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 )

)𝐺
,

is isomorphic.

Proof. Lemma 3.20 guarantees that the sheaf morphism (4.20.1) is isomorphic over the big

open set 𝑋 + ⊆ 𝑋 . On the other hand, recall
7

from [GKKP11, Lem. A.4] that the invari-

ant push-forward sheaves in (4.20.1) are both reflexive. The isomorphism will therefore

extend from 𝑋 +
to 𝑋 . □

7
The paper [GKKP11] formulates this result in the algebraic setting. The proof of [GKKP11, Lem. A.4] works

without change also for normal analytic varieties.
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5. Pull-back over uniformizable pairs

5.1. Motivation. This section establishes pull-back properties of adapted reflexive

tensors; these will be instrumental when we define “morphisms of C-pairs” in Sections 7–

8 below. To motivate the somewhat technical discussion, let us first recall Reid’s construc-

tion of the Albanese for projective varieties with rational singularities, [Rei83, Prop. 2.3]

and [BS95, Sect. 2.4].

Reminder 5.1 (Albanese for algebraic varieties with rational singularities). Given a com-

plex, projective variety 𝑋 with rational singularities, Reid considers a resolution of sin-

gularities, 𝜑 : 𝑌 → 𝑋 and takes the Albanese of 𝑌 . The assumption that 𝑋 has rational

singularities implies that all 1-differentials on 𝑌 are trivial on 𝜑-fibres. This in turn yields

a factorization,

(5.1.1)

𝑌 Alb(𝑌 )

𝑋,

𝜑 , resolution

alb(𝑌 )

∃!

and shows that Alb(𝑌 ) does not depend on the choice of the resolution. It is therefore

reasonable to take Alb(𝑌 ) as the Albanese of 𝑋 .

For the forthcoming construction of an “Albanese for C-pairs”, we would like to emu-

late Reid’s argument in a setting where 𝑋 is a cover of a locally uniformizable C-pair

(𝑋, 𝐷). But covers need not have rational singularities, so that we cannot expect a fac-

torization of the Albanese as in (5.1.1) above! We will however show that differentials on

𝑌 that are adapted outside the 𝜑-exceptional locus are trivial on 𝜑-fibres. More generally,

we show that any adapted differential on

𝑋reg � 𝑌 \ 𝜑-exceptional set

extends to a differential form on𝑌 that is trivial on𝜑-fibres. To give an adapted differential

on 𝑋reg it is of course equivalent to give an adapted reflexive differential 𝑋 . By the end of

the day, we will thus construct a “pull-back map”

𝐻 0
(
𝑋, Ω [1]

(𝑋,𝐷,•)
)
→ 𝐻 0

(
𝑌, Ω1

𝑌

)
.

This section aims to construct pull-back maps more generally, for arbitrary tensors and

arbitrary morphisms 𝜑 from manifolds to 𝑋 .

5.2. Main results. To formulate our results precisely and to set the stage for the re-

mainder of the present section, consider the following situation.

Setting 5.2 (Smooth space mapping to cover of 𝑋 ). Let (𝑋, 𝐷𝑋 ) be a locally uniformizable

C-pair. Let (𝑌, 𝐷𝑌 ) be a log pair. Assume that (𝑌, 𝐷𝑌 ) is nc and consider a sequence of

morphisms

𝑌 𝑋 𝑋,
𝜑 𝛾 , 𝑞-morphism

where supp𝜑∗𝛾∗⌊𝐷𝑋 ⌋ ⊆ supp𝐷𝑌 .

Remark 5.3. We do not assume that the variety 𝑋 of Setting 5.2 is smooth. The morphism

𝜑 may take its image in the singular locus of 𝑋 .

Maintain Setting 5.2. Following ideas and methods of [Keb13], we aim to construct

“natural” pull-back morphisms

(5.4.1) 𝑑C𝜑 : 𝜑∗
Sym

[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾 ) → Sym
• Ω•

𝑌 (log𝐷𝑌 )

that compare adapted reflexive tensors on𝑋 with logarithmic Kähler tensors on the mani-

fold 𝑌 .
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Remark 5.5 (Pull-back for a uniformized variety). Assume Setting 5.2. If the 𝑞-morphism

𝛾 is a uniformization, then Item (4.6.5) of Example 4.6 identifies adapted reflexive tensors

on 𝑋 with logarithmic Kähler tensors,

Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾 ) = Sym
• Ω•

𝑋
(log𝛾∗⌊𝐷𝑋 ⌋) .

The most natural choice for the pull-back morphisms (5.4.1) is the standard pull-back of

logarithmic Kähler differentials and tensors.

Remark 5.6 (Optimality and possible generalizations). This section works in Setting 5.2,

where (𝑋, 𝐷) is locally uniformizable. If one is interested only in adapted reflexive differ-

entials rather than adapted reflexive tensors, it is conceivable that a pull-back morphism

as in (5.4.1) exists under less restrictive conditions. We discuss possible generalizations

in Section 15.1 near the end of this paper.

5.3. Construction of pull-back maps in the uniformizable case. We begin with an

explicit construction for a pull-back morphism, at least in the setting where𝑋 is uniform-

izable.

Construction 5.7 (Pull-back of sections in the uniformizable case). In Setting 5.2, assume

that (𝑋, 𝐷𝑋 ) is uniformizable. Choose a uniformization 𝑢 : 𝑋𝑢 ↠ 𝑋 and consider a

diagram

q𝑌 +
q𝑋 𝑋𝑢

𝑌 + 𝑋 𝑋,

q𝜑

𝑠+ 𝑡

q𝛾

𝑢, uniformization

𝜑+
:=𝜑 |𝑌+ 𝛾 , 𝑞-morphism

constructed as follows.

• Choose a component q𝑋 of the normalized fibre product 𝑋𝑢 ×𝑋 𝑋 .

• Choose a component q𝑌 of the normalized fibre product 𝑌 ×
𝑋

q𝑋 and denote the

natural morphism by 𝑠 : q𝑌 → 𝑌

• Let 𝑌 + ⊆ 𝑌 be the maximal open set over which (q𝑌, 𝑠∗𝐷𝑌 ) is nc and denote the

preimage by q𝑌 +
:= 𝑠−1 (𝑌 +).

To begin the construction in earnest, observe that there are natural morphisms,

(𝑠+)∗ (𝜑+)∗ Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾 ) = q𝜑∗𝑡∗ Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾 ) commutativity

→ q𝜑∗𝑡 [∗] Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾 ) natural(5.7.1)

→ q𝜑∗
Sym

[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾◦𝑡 ) Observation 4.14.

Secondly, recall

Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾◦𝑡 ) = Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝑢◦q𝛾 ) commutativity

= q𝛾 [∗] Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝑢 ) Observation 4.15(5.7.2)

= q𝛾∗ Sym
• Ω•

𝑋𝑢
(log𝑢∗⌊𝐷𝑋 ⌋) Example 4.6.

As a consequence, pull-back of logarithmic Kähler tensors yields natural embeddings

q𝜑∗
Sym

[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾◦𝑡 ) = (q𝛾 ◦ q𝜑)∗ Sym
• Ω•

𝑋𝑢
(log𝑢∗⌊𝐷𝑋 ⌋) (5.7.2)

↩→ Sym
• Ω•

q𝑌 + (log 𝑠∗𝐷𝑌 ) pull-back(5.7.3)

= (𝑠+)∗ Sym
• Ω•

𝑌 + (log𝐷𝑌 ) branching of 𝑠+ .
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Combining (5.7.1) with (5.7.3) and taking push-forward, we obtain maps as follows,

(𝜑+)∗ Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾 ) → (𝑠+)∗ (𝑠+)∗ (𝜑+)∗ Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾 ) natural

→ (𝑠+)∗ (𝑠+)∗ Sym
• Ω•

𝑌 + (log𝐷𝑌 ) (5.7.3) ◦ (5.7.1)

→ Sym
• Ω•

𝑌 + (log𝐷𝑌 ) trace.

Given that Ω•
𝑌
(log𝐷𝑌 ) is locally free and 𝑌 + ⊆ 𝑌 is big, these maps extend to the desired

pull-back morphisms 𝑑C𝜑 of the form promised in (5.4.1) above.

We leave the proof of the following fact to the reader.

Fact 5.8 (Canonicity). The pull-back morphisms 𝑑C𝜑 of Construction 5.7 do not depend on
any of the choices made in the construction. □

5.4. Construction of pull-back maps in general. Construction 5.7 evidently com-

mutes with restrictions to open subsets of domain and target, which allows extending

the setup from the uniformizable to the locally uniformizable case.

Fact 5.9 (Pull-back over locally uniformizable pairs). In Setting 5.2, there exist unique sheaf
morphisms

𝑑C𝜑 : 𝜑∗
Sym

[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾 ) → Sym
• Ω•

𝑌 (log𝐷𝑌 )

such that for every uniformizable open subset 𝑋 + ⊆ 𝑋 with preimages 𝑋 + ⊆ 𝑋 and 𝑌 + ⊆ 𝑌 ,
the restrictions𝑑C𝜑 |𝑌 + agree with the pull-back morphisms𝑑C

(
𝜑 |𝑌 +

)
of Construction 5.7. □

Definition 5.10 (Pull-back over locally uniformizable pairs). We refer to the pull-back
morphisms 𝑑C• of Fact 5.9 as the pull-back for adapted reflexive tensors over the locally

uniformizable pair (𝑋, 𝐷𝑋 ).
5.5. Universal properties. Construction 5.7 enjoys a number of fairly obvious proper-

ties whose proofs are conceptually easy, but lengthy to write down. To keep the size of

this already long paper within reason, we leave the proofs of the following facts to the

reader.

Fact 5.11 (Compatibility with Kähler differentials). In Setting 5.2, let𝜎 ∈ 𝐻 0
(
𝑋, Sym

𝑛 Ω
𝑝

𝑋

)
be a Kähler tensor, with associated reflexive tensor 𝜎𝑟 ∈ 𝐻 0

(
𝑋, Sym

[𝑛] Ω
[𝑝 ]
𝑋

)
. If 𝜎𝑟 is adap-

ted, then the composed morphism

𝐻 0
(
𝑋, Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝛾 )

) 𝜑∗

−−→ 𝐻 0
(
𝑌, 𝜑∗

Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝛾 )

)
𝐻 0

(
𝑑C𝜑

)
−−−−−−−→ 𝐻 0

(
𝑌, Sym

𝑛 Ω
𝑝

𝑌
(log𝐷𝑌 )

)
maps the adapted reflexive tensor 𝜎𝑟 to

(𝑑𝜑) (𝜎) ∈ 𝐻 0
(
𝑌, Sym

𝑛 Ω
𝑝

𝑌

)
⊆ 𝐻 0

(
𝑌, Sym

𝑛 Ω
𝑝

𝑌
(log𝐷𝑌 )

)
. □

To avoid any potential confusion, we recall that the assumption “𝜎𝑟 adapted” in

Fact 5.11 is equivalent to the assumption that 𝜎𝑟 is contained in the subspace of adap-

ted reflexive tensors,

𝜎𝑟 ∈ 𝐻 0
(
𝑋, Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝛾 )

)
⊆ 𝐻 0

(
𝑋, Sym

[𝑛] Ω
[𝑝 ]
𝑋

)
.

The term (𝑑𝜑) (𝜎) is the classic pull-back of Kähler tensors.

Fact 5.12 (Functoriality). Let (𝑋, 𝐷𝑋 ) be a locally uniformizable C-pair and let (𝑌•, 𝐷𝑌• )
be nc log pairs. Assume that a commutative diagram of the following form is given,

𝑌1 𝑋1 𝑋

𝑌2 𝑋2 𝑋,

𝜑1

𝛼

𝛾1 , 𝑞-morphism

𝛽

𝜑2 𝛾2 , 𝑞-morphism
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where

supp𝜑∗
•𝛾

∗
• ⌊𝐷𝑋 ⌋ ⊆ supp𝐷𝑌• and supp𝛼∗𝐷𝑌2

⊆ supp𝐷𝑌1
.

Then, the pull-back morphisms form a commutative diagram of sheaves on 𝑌1, as follows

𝜑∗
1

Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾1 ) Sym
• Ω•

𝑌1

(log𝐷𝑌1
)

𝜑∗
1
𝛽 [∗] Sym

[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾2 ) 𝛼∗ Sym
• Ω•

𝑌2

(log𝐷𝑌2
)

𝜑∗
1
𝛽∗ Sym

[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾2 ) 𝛼∗𝜑∗
2

Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾2 )

𝑑C𝜑1

𝜑∗
1
(Obs. 4.14) 𝑑𝛼

natl. 𝛼∗ (𝑑C𝜑2 )

□

Fact 5.13 (Open immersions). In Setting 5.2, assume that the morphism 𝜑 : 𝑌 → 𝑋 is an
open immersion, so we may view 𝑌 as an open subset of 𝑋 . The pull-back morphisms 𝑑C𝜑
are then equal to the composition of the following sequence of sheaf morphisms,

Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝛾 )
��
𝑌
↩→ Sym

[•] Ω [•]
𝑋

(
log𝛾∗⌊𝐷𝑋 ⌋

) ��
𝑌

Observation 4.8

↩→ Sym
[•] Ω [•]

𝑌
(log𝐷𝑌 ) = Sym

• Ω•
𝑌 (log𝐷𝑌 ),

where the last inclusion is induced by the assumption that supp𝛾∗⌊𝐷𝑋 ⌋ ⊆ supp𝐷𝑌 . □

Fact 5.14 (Standard operations). The pull-back morphisms 𝑑C𝜑 of Fact 5.9 commute with
(reflexive) wedge products, symmetric products and exterior derivatives. □

5.5.1. Consequences of the universal properties. We highlight a few cases that will later

become relevant. The following propositions are direct consequences of the compatibility

between𝑑C and the pull-back of Kähler tensors, as stated in Fact 5.11 on the previous page.

Proposition 5.15 (Smooth base spaces). In Setting 5.2, assume that the space 𝑋 is smooth
and 𝐷𝑋 = 0, so that Sym

[•]
C Ω [•]

(𝑋,0,𝛾 ) = 𝛾
∗

Sym
• Ω•

𝑋
⊆ Sym

• Ω•
𝑋

is a sheaf of Kähler tensors.
If (𝑌, 𝐷𝑌 ) is nc, then the pull-back morphisms 𝑑C𝜑 equal the standard pull-back of Kähler
tensors. More precisely, there exist commutative diagrams as follows,

𝜑∗
Sym

[•]
C Ω [•]

(𝑋,0,𝛾 ) Sym
• Ω•

𝑌
(log𝐷𝑌 )

𝜑∗𝛾∗ Sym
• Ω•

𝑋
Sym

• Ω•
𝑌

Sym
• Ω•

𝑌
(log𝐷𝑌 ).

𝑑C𝜑

𝑑 (𝛾◦𝜑 ) □

Proposition 5.16 (Uniformizations). In Setting 5.2, assume that the cover 𝛾 is a uniform-
ization, so that Sym

[•]
C Ω [•]

(𝑋,0,𝛾 ) = Sym
• Ω•

𝑋
(log𝛾∗⌊𝐷⌋) is a sheaf of logarithmic Kähler

tensors. If (𝑌, 𝐷𝑌 ) is nc, then the pull-back morphisms 𝑑C𝜑 equal the standard pull-back of
Kähler differentials. More precisely, there exist commutative diagrams as follows,

𝜑∗
Sym

[•]
C Ω [•]

(𝑋,0,𝛾 ) Sym
• Ω•

𝑌
(log𝐷𝑌 )

Sym
• Ω•

𝑋
(log𝛾∗⌊𝐷⌋) Sym

• Ω•
𝑌
(log𝐷𝑌 ).

𝑑C𝜑

𝑑𝜑 □

Proposition 5.17 (Constant morphism). In Setting 5.2, assume that 𝜑 is constant. Then,
the pull-back morphisms 𝑑C𝜑 are zero.
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Proof. Write {𝑥} := img𝜑 . Applying Fact 5.12 to the diagram

𝑌 𝑋 𝑋

{𝑥} 𝑋 𝑋,

𝜑

const

𝛾 , 𝑞-morphism

𝛾

we obtain identifications 𝑑C𝜑 = 𝑑 const = 0. □

5.5.2. Uniqueness. We mentioned in Section 5.2 that the pull-back morphisms 𝑑C are

uniquely determined by “functoriality” and “compatibility with pull-back of Kähler dif-

ferentials”. While true, this might require some explanation. To begin, observe that com-

patibility with the pull-back of Kähler differentials alone does not determine the pull-back

morphism 𝑑C𝜑 in all possible settings — with the notation of Setting 5.2, think of a case

where the image of 𝜑 is entirely contained in the singular locus of 𝑋 .

It is however true that compatibility with the pull-back of Kähler differentials and

functoriality together determine the collection of pull-back morphisms,(
𝑑C𝜑

)
(𝜑 from a sequence of morphisms as in Setting 5.2) .

Precise statements and proofs are not hard to give, but will be lengthy and painful to spell

out. Rather than going into too much detail here, we refer the reader to [Keb13, Sect. 6.4]

and [KS21, Sect. 14] that discuss completely analogous situations.

6. Invariants of C-pairs

Almost every invariant defined for compact Kähler manifolds (or logarithmic Kähler

pairs) has an analogue in the setting of C-pairs. This section introduces two invari-

ants of particular importance: irregularities and Kodaira-Iitaka dimensions for sheaves

of tensors.

6.1. Irregularities. For C-pairs, adapted differentials take the role that ordinary differ-

entials play for ordinary spaces. Accordingly, there exists a meaningful notion of “irregu-

larity” for C-pairs. It goes without saying that the irregularity is of fundamental import-

ance when we discuss C-analogues of the Albanese in the follow-up paper [KR24a].

Definition 6.1 (Irregularity, augmented irregularity). Let (𝑋, 𝐷) be a compact C-pair and
let 𝛾 : 𝑋 ↠ 𝑋 be any cover. We refer to the number

𝑞(𝑋, 𝐷,𝛾) := ℎ0

(
𝑋, Ω [1]

(𝑋,𝐷,𝛾 )

)
as the irregularity of (𝑋, 𝐷,𝛾). The number

𝑞+ (𝑋, 𝐷) := sup

{
𝑞(𝑋, 𝐷,𝛾) | 𝛾 a cover

}
∈ N ∪ {∞}

is called augmented irregularity of the C-pair (𝑋, 𝐷).

We do not fully understand how the irregularities 𝑞(𝑋, 𝐷,𝛾) depend on the covering

map 𝛾 . Section 15.2 gathers several open questions there. Before turning to a C-analogue

of the Kodaira-Iitaka dimension in the next subsection, we highlight a few cases where

the irregularities can be computed.

Lemma 6.2 (Projective manifolds of small codimension). Let 𝑋 be a projective manifold.
If 𝑋 admits an embedding 𝑋 ⊆ P𝑛 with 𝑛 < 2 · dim𝑋 , then 𝑞+ (𝑋, 0) = 0.

Proof. If 𝑞+ (𝑋, 0) > 0, then there exists a Galois cover 𝛾 : 𝑋 ↠ 𝑋 with group 𝐺 and a

non-trivial section 𝜎 in Ω [1]
(𝑋,0,𝛾 ) = 𝛾

∗Ω1

𝑋
. The pluri-differential∏

𝑔∈𝐺
𝑔∗𝜎 ∈ 𝐻 0

(
𝑋, Sym

#𝐺 Ω [1]
(𝑋,0,𝛾 )

)
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is 𝐺-invariant, not trivial, and by Lemma 4.20 gives a non-trivial section in Sym
#𝐺 Ω1

𝑋
.

It has, however, been shown in [Sch92] that ℎ0
(
𝑋, Sym

𝑁 Ω1

𝑋

)
= 0 for every number

𝑁 ∈ N. □

To construct a more interesting example, recall from [HP19, Thm. 1.5] that every pro-

jective, klt variety 𝑋 with numerically trivial canonical class admits a cover 𝑋 ↠ 𝑋 , étale

in codimension one, and a decomposition

𝑋 � 𝐴 ×
∏
𝑗

𝑌𝑗 ×
∏
𝑘

𝑍𝑘

where 𝐴 is an Abelian variety, where the 𝑌𝑗 are (possibly singular) Calabi-Yau varieties

and the 𝑍𝑘 are (possibly singular) irreducible symplectic varieties. We refer the reader to

[GGK19, Sect. 1.4 and Def. 1.3] for a discussion and for the definition of “singular Calabi-

Yau” and “singular irreducible symplectic”.

Lemma 6.3. Let 𝑌 be singular Calabi-Yau or singular irreducible symplectic. If 𝜑 : 𝑋 → 𝑌

is any birational morphism between normal, projective varieties, and if 𝐷 ∈ Div(𝑋 ) is a
𝜑-exceptional divisor that makes (𝑋, 𝐷) a C-pair, then 𝑞+ (𝑋, 𝐷) = 0.

Proof. Assume that 𝑞+ (𝑋, 𝐷) > 0. As in the proof of Lemma 6.2, we can then construct a

pluri-differential form on𝑋reg\supp𝐷 , hence a non-trivial section𝜎 ∈ 𝐻 0
(
𝑌 +, Sym

• Ω1

𝑌 +
)
,

where

𝑌 +
:= 𝑌reg \ indeterminacy locus of 𝜑−1.

Since 𝑌 + ⊆ 𝑌 is a big open subset, 𝜎 induces a non-trivial reflexive pluri-differential

𝜎 ′ ∈ 𝐻 0
(
𝑌, Sym

[•] Ω [1]
𝑌

)
. However, it has been shown in [GGK19, Thm. 1.11] that no

such reflexive pluri-differential exist if 𝑌 is singular Calabi-Yau or singular irreducible

symplectic. □

We refer the reader to [BKT13] for more on the relation between existence of pluri-

differentials and the geometry of the underlying space.

Example 6.4 (Unbounded Irregularities). Let 𝑋 be a compact Riemann surface of general

type, and let 𝛾 : 𝑋 → 𝑋 be any étale cover. Then,

𝑞(𝑋, 0, 𝛾) = ℎ0
(
𝑋, Ω [1]

(𝑋,0,𝛾 )
)
= ℎ0

(
𝑋, 𝛾∗Ω1

𝑋

)
= ℎ0

(
𝑋, Ω1

𝑋

)
= 𝑔(𝑋 ).

Given that étale covers of arbitrarily high degrees exist, we find that 𝑞+ (𝑋, 0) = ∞.

6.2. The C-Kodaira-Iitaka dimension. This section introduces the C-Kodaira-Iitaka

dimension for rank-one sheaves of adapted tensors. We refer the reader to [JK11, Sect. 4]

for a related construction, for references, and proper attributions.

Definition 6.5 (C-product sheaves). Let (𝑋, 𝐷) be a C-pair and let 𝛾 : 𝑋 → 𝑋 be a 𝑞-
morphism. Assume we are given numbers 𝑛,𝑑, 𝑝 ∈ N+ and a coherent subsheaf of adapted
reflexive tensors,

F ⊆ Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) .

Using the inclusion

Sym
[𝑑 ] F ⊆ Sym

[𝑑 ]
Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 )

Obs. 4.11
⊆ Sym

[𝑑 ·𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) ,

we define the 𝑑 th C-product sheaf of F as

Sym
[𝑑 ]
C F := saturation of Sym

[𝑑 ] F in Sym
[𝑑 ·𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) .

Remark 6.6 (Elementary properties). As the saturation of a coherent sheaf within a re-

flexive sheaf, the product sheaf Sym
[𝑑 ]
C F of Definition 6.5 is always reflexive. If F has

rank one, then Sym
[𝑑 ]
C F also has rank one.
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Definition 6.7 (C-Kodaira-Iitaka dimension). Let (𝑋, 𝐷) be a compact C-pair and let 𝛾 :

𝑋 ↠ 𝑋 be a cover. Given numbers 𝑛, 𝑝 ∈ N+ and a coherent, rank-one subsheaf of adapted
reflexive tensors,

F ⊆ Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) ,

consider the set
𝑀 :=

{
𝑚 ∈ N

���ℎ0
(
𝑋, Sym

[𝑚]
C F

)
> 0

}
.

If 𝑀 = ∅, we say that the sheaf F has C-Kodaira-Iitaka dimension minus infinity and
write 𝜅C (F ) = −∞. Otherwise, consider the natural meromorphic maps

𝜑𝑚 : 𝑋 d P

(
𝐻 0

(
𝑋, Sym

[𝑚]
C F

)∨)
, for each𝑚 ∈ 𝑀

and define the C-Kodaira-Iitaka dimension as

𝜅C (F ) = max

𝑚∈𝑀

{
dim𝜑𝑚 (𝑋 )

}
,

where 𝜑𝑚 (𝑋 ) denotes the Zariski closure of 𝜑𝑚 (𝑋 ) ⊆ P•.

Remark 6.8. Recall from Reminder 2.8 on page 5 that the 𝜑𝑚 are meromorphic indeed, so

that 𝜑𝑚 (𝑋 ) ⊆ P• are constructible. This implies that the max in the definition of 𝜅C (F )
is a maximum and that 𝜅C (F ) ≤ dim𝑋 .

Warning 6.9. Unlike the standard Kodaira-Iitaka dimension, the C-Kodaira-Iitaka dimen-

sion is defined only for subsheaves of adapted reflexive differentials. Its value is gener-

ally not an invariant of the sheaf alone, and will often depend on the embedding into

Sym
[•]
C Ω [•]

(𝑋,𝐷,𝛾 ) .

6.3. Bogomolov-Sommese vanishing and special pairs. Campana has observed in

[Cam11, Sect. 3.5] that the classic vanishing theorem of Bogomolov and Sommese, [EV92,

Cor. 6.9] carries over to C-pairs with simple normal crossing boundary. Using extension

theorems for differential forms on log canonical spaces, Patrick Graf generalized Cam-

pana’s observation substantially in his thesis [Gra13]. While Graf works with projective

varieties, his arguments carry over to the setting of compact Kähler spaces
8
.

Theorem 6.10 (Bogomolov-Sommese vanishing on 𝑋 , [Gra15, Thm. 1.2]). Let (𝑋, 𝐷) be
a log canonical C-pair where 𝑋 is compact Kähler. If F ⊆ Ω

[𝑝 ]
(𝑋,𝐷,Id𝑋 ) is coherent of rank

one, then 𝜅C (F ) ≤ 𝑝 . □

We say that a pair is special if the inequality in the Bogomolov-Sommese vanishing

theorem is strict.

Definition 6.11 (Bogomolov sheaf on𝑋 , special pair). Let (𝑋, 𝐷) be a log canonical C-pair
where 𝑋 is compact Kähler. A Bogomolov sheaf on 𝑋 is a coherent sheaf F ⊆ Ω

[𝑝 ]
(𝑋,𝐷,Id𝑋 )

of rank one such that if 𝜅C (F ) = 𝑝 .

Definition 6.12 (Special C-pair). Let (𝑋, 𝐷) be a log canonical C-pair where 𝑋 is compact
Kähler. The pair (𝑋, 𝐷) is called special when there are no Bogomolov sheaves.

Warning 6.13. We remark that Definition 6.11 differs from Campana’s. In [Cam11,

Déf. 5.17], Campana defines “specialness” in terms of meromorphic fibrations𝑋 d 𝑌 onto

orbifolds of general type. For pairs with snc boundary, he shows in [Cam11, Cor. 3.13]

that the two definitions agree.

8
Graf’s thesis relies on the paper [GKKP11], which provides the relevant extension theorems for differential

forms in the algebraic setting. The newer paper [KS21] establishes analogous results in the analytic setting.
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Remark 6.14. The importance of special pairs comes from the existence of the core map
constructed by Campana [Cam11, Théo. 10.1] for smooth C-pairs: Given a smooth C-

pair (𝑋, 𝐷) where 𝑋 is compact Kähler, there exists a unique fibration 𝑐 (𝑋,𝐷 ) : (𝑋, 𝐷) d
𝐶 (𝑋, 𝐷) with special generic fibres and orbifold base of general type. Campana’s con-

struction therefore splits any smooth C-pair into two antithetic parts, of “special” and

“general” type.

Under assumptions that are substantially stronger than those of Theorem 6.10, an ana-

logue of the Bogomolov-Sommese vanishing theorem will hold for sheaves of adapted

reflexive tensors on arbitrary covers of 𝑋 . We include a full statement for future refer-

ence and refer the reader to Sections 15.2 and 15.4 for questions concerning potential

generalizations.

Proposition 6.15 (Bogomolov-Sommese vanishing on covers of 𝑋 ). Let (𝑋, 𝐷) be a loc-
ally uniformizable C-pair where 𝑋 is compact Kähler. Let 𝛾 : 𝑋 ↠ 𝑋 be a cover. If
F ⊆ Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) is coherent of rank one, then 𝜅C (F ) ≤ 𝑝 .

Proof. For the reader’s convenience, we subdivide the proof into relatively independent

steps.

Step 1: Setup. Let 𝜋 : 𝑌 ↠ 𝑋 be a strong log resolution of the pair (𝑋,𝛾∗⌊𝐷⌋) and consider

the reduced divisor

𝐷𝑌 :=

(
𝜋∗𝛾∗⌊𝐷⌋

)
red

∈ Div(𝑌 ) .

The pair (𝑌, 𝐷𝑌 ) is then snc, and Fact 5.9 provides us with pull-back maps

𝑑C𝜋 : 𝜋∗
Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) → Sym

𝑛 Ω
𝑝

𝑌
(log𝐷𝑌 ).

We consider the saturated images of the C-product sheaves Sym
[𝑛]
C F and write

F𝑛
𝑌 := saturation of (𝑑C𝜋)

(
𝜋∗

Sym
[𝑛]
C F

)
in Sym

𝑛 Ω
𝑝

𝑌
(log𝐷𝑌 ).

There are two things that we can say immediately.

(6.15.1) The sheaves F𝑛
𝑌

are reflexive of rank one. Since 𝑌 is smooth, this implies that

F𝑛
𝑌

are invertible, [OSS11, Lem. 1.1.5].

(6.15.2) The compatibility of pull-back and reflexive symmetric products asserts that(
F 1

𝑌

)⊗𝑛
= Sym

𝑛 F 1

𝑌

Fact 5.14

⊆ F𝑛
𝑌 , for every 𝑛 ∈ N+.

Step 2: Relation between F 1

𝑌
and F𝑛

𝑌
. Following ideas of Patrick Graf [Gra13, Gra15]

and simplifying some of his arguments, we will show in this step that the inclusions in

Item (6.15.2) are in fact equalities,

(6.15.3)

(
F 1

𝑌

)⊗𝑛
= F𝑛

𝑌 , for every 𝑛 ∈ N+.

Since the sheaves on both sides of (6.15.3) are locally free, it suffices to show equality on

a suitable big open subset of 𝑌 . To this end, recall from the construction of the saturation

that F 1

𝑌
appears on the left of an exact sequence of coherent sheaves on 𝑌 ,

0 → F 1

𝑌 → Ω
𝑝

𝑌
(log𝐷𝑌 ) → Q → 0,

where Q is torsion free, and hence locally free over a suitable big, open subset 𝑌 ◦ ⊆
𝑌 , see [OSS11, Cor. on p. 75]. Since short exact sequences of locally free sheaves

are locally split, the sheaf F 1

𝑌
|𝑌 ◦ is locally a direct summand of Ω

𝑝

𝑌
(log𝐷𝑌 ) |𝑌 ◦ . But

then

(
F 1

𝑌

)⊗𝑛 |𝑌 ◦ is locally a direct summand of Sym
𝑛 Ω

𝑝

𝑌
(log𝐷𝑌 ) |𝑌 ◦ . The subsheaf(

F 1

𝑌

)⊗𝑛 |𝑌 ◦ ⊆ Sym
𝑛 Ω

𝑝

𝑌
(log𝐷𝑌 ) |𝑌 ◦ is therefore saturated, hence equal to F𝑛

𝑌
|𝑌 ◦ . Equal-

ity (6.15.3) thus follows.
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Step 3: End of proof. By construction, sections of the C-product sheaves Sym
[𝑛]
C F induce

section of F𝑛
𝑌

,

𝐻 0

(
𝑋, Sym

[𝑚]
C F

)
↩→ 𝐻 0

(
𝑌, F𝑛

𝑌

)
(6.15.3)

= 𝐻 0

(
𝑌, (F 1

𝑌 )⊗𝑛
)
.

If ℎ0
(
𝑋, Sym

[𝑚]
C F

)
> 0, then the associated meromorphic mappings are related,

𝑌 P

(
𝐻 0

(
𝑋, F𝑛

𝑌

)∨)

𝑋 P

(
𝐻 0

(
𝑋, Sym

[𝑚]
C F

)∨)
,

𝜓𝑚

𝜋
projection

𝜑𝑚

so that dim𝜑𝑚 (𝑋 ) ≤ dim𝜓𝑚 (𝑌 ). In summary, we find that 𝜅C (F ) ≤ 𝜅 (F 1

𝑌
). The classic

Bogomolov-Sommese vanishing theorem, [EV92, Cor. 6.9], asserts that 𝜅 (F 1

𝑌
) ≤ 𝑝 . □

6.4. Conjectures on the geometry of special pairs. The class of special C-pairs is sup-

posed to generalize rational or elliptic curves, which suggests the following conjectures

made by Campana [Cam11, Conj. 13.10, 13.15, 13.23].

Conjecture 6.16. Let (𝑋, 𝐷) be a smooth C-pair where 𝑋 is compact Kähler.
(6.16.1) If ⌊𝐷⌋ = 0 and (𝑋, 𝐷) is special, then the orbifold fundamental group 𝜋1 (𝑋, 𝐷) is

almost Abelian.
(6.16.2) The orbifold Kobayashi pseudo-distance 𝑑 (𝑋,𝐷 ) vanishes identically if and only if

(𝑋, 𝐷) is special.
(6.16.3) If (𝑋, 𝐷) is projective defined over a number field 𝑘 , then there exists a finite exten-

sion 𝑘 ′ ⊃ 𝑘 such that rational points (𝑋, 𝐷) (𝑘 ′) are dense if and only if (𝑋, 𝐷) is
special.

Campana has shown that a special compact Kähler manifold 𝑋 has a surjective Al-

banese map [Cam04, Prop. 5.3] which implies in particular that its classical augmented

irregularity (computed with étale covers) satisfies 𝑞(𝑋 ) ≤ dim𝑋 . We formulate a conjec-

ture generalizing this property to special C-pairs. It will be discussed in a sequel [KR24a]

of this article.

Conjecture 6.17. Let (𝑋, 𝐷) be a log canonical C-pair where𝑋 is compact Kähler. If (𝑋, 𝐷)
is special, then the augmented irregularity satisfies 𝑞+ (𝑋, 𝐷) ≤ dim𝑋 .

7. Diagrams admitting pull-back

We feel that the sheaves of adapted reflexive differentials, and in particular the C-

cotangent sheaf, are the key objects that make Campana’s theory useful. Accordingly,

we define a morphism of C-pairs as a morphism of varieties that allows pull-back of

adapted reflexive differentials, in a manner that is compatible with the standard pull-

back of Kähler differentials, and hence with the pull-back maps introduced in Section 5.4

above.

7.1. Diagrams admitting pull-back. The requirement that pull-back be “compatible

with the standard pull-back of Kähler differentials and with the pull-back maps intro-

duced in Section 5.4” is conceptually straightforward, but gets somewhat technical to

write down correctly. To avoid any potential of confusion, we clarify assumptions and

notation explicitly, remind of the relevant facts, and formulate the main definition in great

detail.
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Setting 7.1 (Commutative diagram of 𝑞-morphisms). Assume we are given C-pairs

(𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) and a commutative diagram of the following form,

(7.1.1)

𝑋 𝑌

𝑋 𝑌 .

𝜑

𝑎, 𝑞-morphism 𝑏, 𝑞-morphism

𝜑

Following the conventions of Sections 2.3 and 2.5 write

• 𝑋 ◦
:= 𝑋 \ supp⌊𝐷𝑋 ⌋ for the open part of (𝑋, 𝐷𝑋 ),

• 𝑌 ◦
:= 𝑌 \ supp⌊𝐷𝑌 ⌋ for the open part of (𝑌, 𝐷𝑌 ), and

• 𝑌 lu ⊆ 𝑌 for the maximal open subset over which (𝑌, 𝐷𝑌 ) is locally uniformizable.

We assume that

(7.1.2) 𝜑 (𝑋 ◦) ⊆ 𝑌 ◦
and img𝜑 ∩ 𝑌 lu ≠ ∅.

Remark 7.2 (𝑞-morphisms and covers). We stress that the morphisms 𝑎 and 𝑏 in (7.1.1)

need not be surjective. In other words, we ask that 𝑎 and 𝑏 are 𝑞-morphisms (and hence

open, not necessarily surjective), but not necessarily adapted covers (which would imply

surjective).

The discussion of Setting 7.1 involves a number of additional and auxiliary objects,

such as pull-back divisors and preimage sets. For the reader’s convenience, we use the

following notation consistently throughout the present section.

Notation 7.3 (Divisors, open sets and restrictions in Setting 7.1). In Setting 7.1, consider

the reduced divisor

𝐷𝑋 :=
(
𝑎∗⌊𝐷𝑋 ⌋

)
red

∈ Div(𝑋 ).
We consider the preimage set

𝑌 +
:= 𝑏−1

(
𝑌 lu

)
⊆ 𝑌 and let 𝑋 + ⊆ 𝜑−1

(
𝑌 +) ⊆ 𝑋

be the maximal open subset where (𝑋, 𝐷𝑋 ) is nc. For brevity, denote the restrictions by(
𝑋 +, 𝐷+

𝑋

)
:=

(
𝑋, 𝐷𝑋

) ��
𝑋 + and 𝜑+

:= 𝜑 |
𝑋 + : 𝑋 + → 𝑌 + .

The following diagram summarizes the situation,

𝑋 + 𝑋 𝑌 𝑌 +

𝜑−1
(
𝑌 lu

)
𝑋 𝑌 𝑌 lu .

𝑎 |
𝑋+

𝜑+

⊆
𝜑

𝑎 𝑏

⊇
𝑏 |

𝑌+

⊆ 𝜑 ⊇

Observation 7.4 (Pull-back morphisms in Setting 7.1). Setting 7.1 reproduces the setup

discussed in Section 5, where we introduced the pull-back map for adapted reflexive dif-

ferentials. Using Notation 7.3, observe that conditions (7.1.2) of Setting 7.1 guarantee that

supp

(
𝜑+)∗𝑏∗⌊𝐷𝑌 ⌋ ⊆ supp𝐷+

𝑋 and 𝑋 + ≠ ∅.

Modulo some differences in the notation, we are therefore in the setting spelled out in 5.2

on page 25. Fact 5.9 will therefore apply to give canonical pull-back morphisms

(7.4.1) 𝑑C𝜑
+

:

(
𝜑+)∗

Sym
[𝑛]
C Ω [•]

(𝑌,𝐷𝑌 ,𝑏 ) → Sym
𝑛 Ω•

𝑋 + (log𝐷+
𝑋 )

that enjoy all properties spelled out in Fact 5.11–5.14 above.



C-PAIRS AND THEIR MORPHISMS 35

Remark 7.5 (Pull-back and adapted reflexive differentials). For the upcoming discussion,

recall from Observation 4.8 that the targets of the pull-back morphisms (7.4.1) contain the

sheaves of adapted reflexive tensors,

Sym
[•]
C Ω [•]

(𝑋,𝐷𝑋 ,𝑎)
��
𝑋 + ⊆ Sym

• Ω•
𝑋 + (log𝐷+

𝑋 ).

Definition 7.6 (Diagrams admitting pull-back of adapted tensors). Assume Setting 7.1
and use Notation 7.3. Given numbers 𝑛, 𝑝 ∈ N+, we say that 𝜑 admits pull-back of adapted

reflexive (𝑛, 𝑝)-tensors or Diagram (7.1.1) admits pull-back of adapted reflexive (𝑛, 𝑝)-
tensors if there exists a sheaf morphism

𝜂 : 𝜑∗
(
Sym

[𝑛]
C Ω

[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏 )

)
→ Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎)

whose restriction to 𝑋 + agrees with the pull-back morphism 𝑑C𝜑+. In other words, there
exists a factorization of 𝑑C𝜑+ as follows,

𝜑∗ (
Sym

[𝑛]
C Ω

[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏 )

) ��
𝑋 + Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎)

��
𝑋 + Sym

𝑛 Ω
𝑝

𝑋 + (log𝐷+
𝑋
),

𝜂 |
𝑋+

𝑑C𝜑+

Obs. 4.8

Notation 7.7 (Diagrams admitting pull-back of adapted differentials). Assume the setting

of Definition 7.6. We say that Diagram (7.1.1) admits pull-back of adapted reflexive differ-
entials if it admits pull-back of adapted reflexive (1, 𝑝)-tensors, for every 𝑝 ∈ N+

.

Warning 7.8 (Not enough to consider 𝑝 = 1). Assume the setup of Definition 7.6. When

proving that 𝜑 admits pull-back of adapted reflexive differentials, one might be tempted

to hope that it suffices to check that 𝜑 admits pull-back of adapted reflexive differentials

only for 𝑝 = 1. This is not the case in general. The sheaf Ω [1]
(𝑌,𝐷𝑌 ,𝑏 ) is typically not locally

free, the natural morphisms

𝑝∧
Ω [1]

(𝑌,𝐷𝑌 ,𝑏 ) → Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏 )

are typically not surjective, and sections in Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏 ) can typically not even locally be

written as products of sections in Ω [1]
(𝑌,𝐷𝑌 ,𝑏 ) . We refer the reader to Example 8.7 on page 38

for a concrete example.

7.2. Elementary properties. The following observations are elementary but useful. We

include them for later reference.

Observation 7.9 (Uniqueness). If it exists at all, then the morphism 𝜂 of Definition 7.6 is

unique. □

Observation 7.10 (Compatibility with pull-back of Kähler tensors). In the setting of Defin-

ition 7.6, assume that we are given numbers 𝑛, 𝑝 ∈ N+
for which the pull-back morphism

𝜂 exists. Let 𝜎 ∈ 𝐻 0
(
𝑌, Sym

𝑛 Ω
𝑝

𝑌

)
be a Kähler tensor, with pull-back 𝜏 ∈ 𝐻 0

(
𝑋, Sym

𝑛 Ω
𝑝

𝑋

)
and denote the associated reflexive tensors by

𝜎𝑟 ∈ 𝐻 0
(
𝑌, Sym

[𝑛] Ω
[𝑝 ]
𝑌

)
and 𝜏𝑟 ∈ 𝐻 0

(
𝑋, Sym

[𝑛] Ω
[𝑝 ]
𝑋

)
.

If 𝜎𝑟 is adapted, then Fact 5.11 implies that 𝜏𝑟 is adapted, and that the composed morphism

𝐻 0
(
𝑌, Sym

[𝑛]
C Ω

[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏 )

) 𝜑∗

−−→ 𝐻 0
(
𝑋, 𝜑∗

Sym
[𝑛]
C Ω

[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏 )

)
𝐻 0 (𝜂 )
−−−−−→ 𝐻 0

(
𝑋, Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎)

)
maps 𝜎𝑟 to 𝜏𝑟 . □



36 STEFAN KEBEKUS AND ERWAN ROUSSEAU

Observation 7.11 (Local nature). In the setting of Definition 7.6, assume that we are given

numbers 𝑛, 𝑝 ∈ N+
. Let (𝑈𝑖 )𝑖∈𝐼 and (𝑉𝑗 ) 𝑗∈ 𝐽 be open coverings of 𝑋 and 𝑌 , respectively.

Then, the morphism 𝜑 admits pull-back of adapted reflexive (𝑛, 𝑝)-tensors if and only if

every restricted morphism

𝜑 |
𝑈𝑖∩𝜑−1 (𝑉𝑖 ) : 𝑈𝑖 ∩ 𝜑 −1

(
𝑉𝑖

)
→ 𝑉𝑖

admits pull-back of adapted reflexive (𝑛, 𝑝)-tensors. □

If the pull-back map 𝜂 exists for given numbers 𝑛, 𝑝 ∈ N+
, it can be seen as a section

of the subsheaf

H𝑜𝑚
𝑋

(
𝜑∗

Sym
[𝑛]
C Ω

[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏 ) , Sym

[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎)

)
,

which is reflexive since Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎) is. To give a section of this sheaf over 𝑋 , it is

thus equivalent to give a section over any big open subset.

Observation 7.12 (Removing small subsets). In the setting of Definition 7.6, assume that

we are given numbers 𝑛, 𝑝 ∈ N+
. Let 𝑈 ⊆ 𝑋 be a big open subset. Then, the morphism

𝜑 admits pull-back of adapted reflexive (𝑛, 𝑝)-tensors if and only if the morphism 𝜑 |
𝑈

admits pull-back of adapted reflexive (𝑛, 𝑝)-tensors. □

8. Morphisms of C-pairs

As motivated in the introduction, we define a C-morphism as a morphism where every

diagram admits pull-back of adapted reflexive differentials. We impose Condition (7.1.2)

to ensure that the word “pull-back of adapted reflexive differentials” carries meaning.

Definition 8.1 (Morphisms of C-pairs). Given C-pairs (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) and a morph-
ism 𝜑 : 𝑋 → 𝑌 with

(8.1.1) 𝜑 (𝑋 ◦) ⊆ 𝑌 ◦ and img𝜑 ∩ 𝑌 lu ≠ ∅,

call 𝜑 a morphism between C-pairs (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) if every commutative diagram of
form (7.1.1) admits pull-back of adapted reflexive differentials.

Remark 8.2 (Notation used in Definition 8.1). Definition 8.1 uses the standard notation

where 𝑋 ◦ ⊆ 𝑋 and 𝑌 ◦ ⊆ 𝑌 denote the open parts of (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ), and 𝑌 lu ⊆ 𝑌 is

the maximal open subset over which (𝑌, 𝐷𝑌 ) is locally uniformizable.

Notation 8.3 (C-morphisms). In the setting of Definition 8.1, we will often write 𝜑 :

(𝑋, 𝐷𝑋 ) → (𝑌, 𝐷𝑌 ) to indicate that a given morphism 𝜑 : 𝑋 → 𝑌 is a morphism between

the C-pairs (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ). We use the word C-morphism for brevity.

Warning 8.4 (Pull-back differentials vs. pull-back of tensors). Note that Definition 8.1

asks for pull-back of adapted reflexive differentials and not for the more general pull-back

of adapted reflexive tensors. This is a deliberate design decision, reflecting the fact that

differentials, rather than tensors, are the objects that carry geometric meaning. Section 13

discusses criteria to guarantee that some C-morphisms do indeed induce pull-back of

adapted reflexive tensors.

The following criterion is a direct consequence of Observations 7.11 and 7.12.

Observation 8.5 (Local nature and removing small subsets). Given C-pairs (𝑋, 𝐷𝑋 ) and

(𝑌, 𝐷𝑌 ) and a morphism 𝜑 : 𝑋 → 𝑌 such that 𝜑 (𝑋 ◦) ⊆ 𝑌 ◦
and img𝜑 ∩ 𝑌 lu ≠ ∅, the

following conditions are equivalent.

(8.5.1) The morphism 𝜑 is a C-morphism.
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(8.5.2) There exist open coverings (𝑈𝑖 )𝑖∈𝐼 and (𝑉𝑗 ) 𝑗∈ 𝐽 of𝑋 and𝑌 , respectively, such that

every restricted morphism

𝜑 |𝑈𝑖∩𝜑−1 (𝑉𝑗 ) : 𝑈𝑖 ∩ 𝜑−1 (𝑉𝑗 ) → 𝑉𝑗

is a C-morphism between the restricted C-pairs(
𝑈𝑖 ∩ 𝜑−1 (𝑉𝑗 ), 𝐷𝑋 ∩𝑈𝑖 ∩ 𝜑−1 (𝑉𝑗 )

)
and (𝑉𝑗 , 𝐷𝑌 ∩𝑉𝑗 ).

(8.5.3) There exists a big open subset 𝑈 ⊂ 𝑋 such that the restriction 𝜑 |𝑈 is a C-

morphism (𝑈 , 𝐷𝑋 ∩𝑈 ) → (𝑌, 𝐷𝑌 ). □

8.1. First example. To check if a given morphism is a C-morphism, Definition 8.1 re-

quires us in principle to consider all diagrams of form (7.1.1) and to check if they admit

pull-back of adapted reflexive differentials, for all numbers 𝑝 . This can be cumbersome.

We will therefore postpone the discussion of interesting examples until useful criteria are

established in the subsequent Section 9. For now, we only mention one example, which

we work out in detail.

Example 8.6 (Morphisms to a manifold without boundary). If (𝑋, 𝐷𝑋 ) is any C-pair and

𝜑 : 𝑋 → 𝑌 is any morphism to a manifold 𝑌 , then 𝜑 is a C-morphism between the pairs

(𝑋, 𝐷𝑋 ) and (𝑌, 0). For a proof, assume that a diagram of form (7.1.1) is given,

𝑋 𝑌

𝑋 𝑌 .

𝜑

𝑎, 𝑞-morphism 𝑏, 𝑞-morphism

𝜑

We need to show that 𝜑 admits pull-back of adapted reflexive differentials. To begin,

observe that

𝑎 [∗]Ω•
𝑋 = Ω [•]

(𝑋,0,𝑎) ⊆ Ω [•]
(𝑋,𝐷𝑋 ,𝑎) while Ω [•]

(𝑌,0,𝑏 ) = 𝑏
∗Ω•

𝑌 .

Pull-back of adapted reflexive differentials is therefore a matter of pulling-back Kähler

differentials. To make this precise, follow Notation 7.3 so that 𝑋 +
is the maximal open

set of 𝑋 where (𝑋, 𝐷𝑋 ) is nc. Proposition 5.15 on page 28 will then identify the pull-back

morphisms for adapted reflexive differentials,

𝑑C𝜑
+

: (𝜑 +)∗Ω [•]
(𝑌,0,𝑏 )︸          ︷︷          ︸

=𝜑∗𝑏∗Ω•
𝑌
|
𝑋+=𝑎∗𝜑∗Ω•

𝑌
|
𝑋+

→ Ω•
𝑋 + (log𝐷+

𝑋 ),

with the pull-back map of Kähler differentials,

𝑎∗𝜑∗Ω•
𝑌
|
𝑋 + 𝑎∗Ω•

𝑋
|
𝑋 + Ω•

𝑋 + Ω•
𝑋 + (log𝐷+

𝑋
).

𝑎∗ (𝑑𝜑 )

𝑑C𝜑+

𝑑𝑎

It follows that

img𝑑C𝜑
+ ⊆ img𝑑𝑎 |

𝑋 + = Ω [•]
(𝑋,0,𝑎) |𝑋 + ⊆ Ω [•]

(𝑋,𝐷𝑋 ,𝑎) |𝑋 + .

It remains to verify that the morphisms 𝑑C𝜑 +
extend from 𝑋 +

to morphisms

𝜂 : 𝜑 ∗Ω [•]
(𝑌,0,𝑏 ) → Ω [•]

(𝑋,𝐷𝑋 ,𝑎)

that are defined on all of 𝑋 . Extension is however clear, given that Ω [•]
(𝑌,0,𝑏 ) is locally free

and 𝑋 + ⊂ 𝑋 is a big subset.
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8.2. First Counterexamples. For singular varieties, Definition 8.1 is quite restrictive.

The reader might find it surprising that a morphism between varieties does not always

give a morphism of C-pairs, even if target and domain are equipped with the empty

boundary.

Example 8.7 (Pull-back for 1-differentials, not for 2-differentials). Consider a construction

described in [KS21, Appendix B]: Let 𝐸 be an elliptic curve and let 𝐿 ∈ Pic(𝐸) be ample.

Let 𝑌 be the affine cone over 𝐸 with conormal bundle 𝐿 and let 𝜑 : 𝑋 → 𝑌 be the minimal

resolution, obtained by blowing up the vertex. Considering the trivial pairs (𝑋, 0) and

(𝑌, 0), a diagram of the form (7.1.1) is then given as

𝑋 𝑌

𝑋 𝑌 .

𝜑=𝜑

𝑎, identity 𝑏, identity

𝜑 , resolution

It follows from [KS21, Prop. B.2] that 𝜑 admits pull-back of reflexive 1-differentials, but

not of reflexive 2-differentials. In particular, 𝜑 does not give a morphism between the

C-pairs (𝑋, 0) and (𝑌, 0).

Example 8.8 (Resolution of the 𝐴1-singularity). Let 𝑌 := A2
and let 𝑏 : 𝑌 → 𝑌 be the

quotient morphism for the action of the multiplicative group ±1, so that 𝑌 has a unique

singular point, which is of 𝐴1 type. We claim that the minimal resolution morphism

𝜑 : 𝑋 → 𝑌 is not a morphism between the C-pairs (𝑋, 0) and (𝑌, 0). In order to see this,

construct a diagram as in (7.1.1),

(8.8.1)

𝑋 A2 𝑌

𝑋 A2

/
±1 𝑌

𝜑 , blow-up

𝑎, quotient
𝑏, quotient

=

𝜑 , blow-up

=

The morphism 𝑎 is two-to-one and ramified exactly along the 𝜑-exceptional curve in 𝑋 .

A direct application of the definitions shows

Ω [1]
(𝑋,0,𝑎) = 𝑎

∗Ω1

𝑋 ⊂ Ω1

𝑋
while Ω [1]

(𝑌,0,𝑏 ) = Ω1

𝑌
.

Note however that the differential 𝑑𝜑 : 𝜑∗Ω1

𝑌
→ Ω1

𝑋
does not take its image in 𝑎∗Ω1

𝑋
.

Remark 8.9 (Kummer K3s). Example 8.8 shows in particular that the contraction morph-

ism 𝜑 : 𝑋 ↠ 𝑌 = 𝐴
/
±1 from a Kummer K3 surface to its associated torus quotient is

not a morphism between the C-pairs (𝑋, 0) and (𝑌, 0). This observation will be of critical

importance when we discuss the Albanese of a C-pair in the forthcoming paper [KR24a].

We continue this Example 8.8 in Section 10 on page 42, once suitable criteria for C-

morphisms have been established. It will turn out that the morphisms of Example 8.8

and Remark 8.9 do induce C-morphisms once the correct, natural multiplicities of the

exceptional sets are taken into account.

9. Criteria for C-morphisms

Throughout the present section, we consider Setting 7.1 in the special case where the

𝑞-morphisms are (adapted) covers and in particular surjective. We formulate our setup

precisely and fix notation.
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Setting 9.1. Let (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) be two C-pairs and assume that there exists a com-

mutative diagram as follows,

𝑋 𝑌

𝑋 𝑌,

𝜑

𝑎, arbitrary cover 𝑏, adapted cover

𝜑

where 𝜑 (𝑋 ◦) ⊆ 𝑌 ◦
and img𝜑 ∩ 𝑌 lu ≠ ∅. Use Notation 7.3/Observation 7.4 and consider

the canonical pull-back morphisms

(9.1.1) 𝑑C𝜑
+

: (𝜑 +)∗Ω [•]
(𝑌,𝐷𝑌 ,𝑏 ) → Ω•

𝑋 + (log𝐷+
𝑋 )

Setting 9.1 ends here.

If the morphism 𝜑 of Setting 9.1 admits pull-back of adapted reflexive differentials, one

might be tempted to hope that𝜑 is then a C-morphism. This is not the case in general. The

following example shows that one cannot check that a given morphism is a C-morphism
by looking at one pair of covers only, even if both covers are adapted.

Example 9.2 (Not enough to check one pair of adapted morphisms). Let 𝜑 : 𝑋 → 𝑌 be

the minimal resolution of the 𝐴1-singularity, as discussed in Example 8.8. Take 𝑎 := Id𝑋

and 𝑏 := Id𝑌 and note that the identity morphisms are adapted covers for the pairs (𝑋, 0)
and (𝑌, 0). We are thus in Setting 9.1. It is then very obvious that Ω [•]

(𝑋,0,Id𝑋 ) = Ω•
𝑋

and

Ω [•]
(𝑌,0,Id𝑌 ) = Ω [•]

𝑌
, and the existence of pull-back morphisms 𝜋∗Ω [•]

𝑌
→ Ω•

𝑋
is precisely the

content of the extension theorem for the𝐴1-singularity, see [GKK10, Thm. 1.1], [GKKP11,

Thm. 1.5] or [KS21, Cor. 1.8]. But we have seen in Example 8.8 that𝜑 is not a C-morphism.

In spite of the negative Example 9.2, there do exist relevant settings where a look at one
adapted cover and one value of 𝑝 suffices to guarantee that a given morphism of varieties

is in fact a morphism of C-pairs. The following proposition and its corollary identify two

such cases.

Proposition 9.3 (Criterion for C-morphisms). In Setting 9.1, assume that Ω [1]
(𝑌,𝐷𝑌 ,𝑏 ) is

locally free and that there exists a sheaf morphism

𝜂1
: 𝜑 ∗Ω [1]

(𝑌,𝐷𝑌 ,𝑏 ) → Ω [1]
(𝑋,𝐷𝑋 ,𝑎)

whose restriction to 𝑋 + agrees with the canonical pull-back morphisms 𝑑C𝜑 +. Then, 𝜑 is a
C-morphism between the pairs (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ).

Proposition 9.3 will be shown in Section 9.2 below.

Corollary 9.4 (Criterion for C-morphisms). In Setting 9.1, assume that 𝑌 is smooth of
dimension two and that there exists a sheaf morphism

𝜂1
: 𝜑 ∗Ω [1]

(𝑌,𝐷𝑌 ,𝑏 ) → Ω [1]
(𝑋,𝐷𝑋 ,𝑎)

whose restriction to 𝑋 + agrees with the canonical pull-back morphisms 𝑑C𝜑 +. Then, 𝜑 is a
C-morphism between the pairs (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ).

Proof. Recall from [OSS11, Lem. 1.1.10] that the reflexive sheaf Ω [1]
(𝑌,𝐷𝑌 ,𝑏 ) is locally free

and apply Proposition 9.3. □

9.1. Elementary criteria for C-morphisms. The proof of Proposition 9.3 relies on the

following lemma. Since the lemma and the subsequent criterion for a morphism of vari-

eties to be a C-morphism will be used several times in the sequel, we found it worth the

while to spell out all details.
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Lemma9.5 (Test for pull-back of adapted reflexive differentials). Assume we are given two
C-pairs, (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ), and a commutative diagram of morphisms between normal,
analytic varieties,

(9.5.1)

q𝑋 q𝑌

𝑋 𝑌

𝑋 𝑌 .

q𝜑

𝛼 , cover 𝛽 , cover

𝜑

𝑎, 𝑞-morphism 𝑏, 𝑞-morphism

𝜑

If q𝜑 admits pull-back of adapted reflexive differentials, then 𝜑 admits pull-back of adapted
reflexive differentials.

We do not believe that the converse of Lemma 9.5 holds in general. Proposition 9.3

and Corollary 9.4 identify special situations where a converse can be shown to hold.

Proof of Lemma 9.5. Assuming that q𝜑 admits pull-back of adapted reflexive differentials,

we need to show that 𝜑 admits pull-back of adapted reflexive differentials. To spell things

out: assuming we are given sheaf morphisms

q𝜂 : q𝜑∗Ω [•]
(𝑌,𝐷𝑌 ,𝑏◦𝛽 ) → Ω [•]

(𝑋,𝐷𝑋 ,𝑎◦𝛼 )

whose restrictions to q𝑋 +
agree with the pull-back morphisms 𝑑Cq𝜑+

, we need to construct

appropriate morphisms

𝜂 : 𝜑 ∗Ω [•]
(𝑌,𝐷𝑌 ,𝑏 ) → Ω [•]

(𝑋,𝐷𝑋 ,𝑎)

whose restrictions to 𝑋 +
agree with the pull-back morphisms 𝑑C𝜑 +

. In analogy to Con-

struction 5.7, we consider sheaf morphisms on q𝑋 ,

𝛼∗𝜑 ∗Ω [•]
(𝑌,𝐷𝑌 ,𝑏 ) = q𝜑∗𝛽∗Ω [•]

(𝑌,𝐷𝑌 ,𝑏 ) commutativity

→ q𝜑∗𝛽 [∗]Ω [•]
(𝑌,𝐷𝑌 ,𝑏 ) natural(9.5.2)

→ q𝜑∗Ω [•]
(𝑌,𝐷𝑌 ,𝑏◦𝛽 ) Observation 4.14

→ Ω [•]
(𝑋,𝐷𝑋 ,𝑎◦𝛼 ) q𝜂,

and take 𝜂 as the composition

𝜑 ∗Ω [•]
(𝑌,𝐷𝑌 ,𝑏 ) → 𝛼∗𝛼

∗𝜑 ∗Ω [•]
(𝑌,𝐷𝑌 ,𝑏 ) natural(9.5.3)

→ 𝛼∗Ω
[•]
(𝑋,𝐷𝑋 ,𝑎◦𝛼 ) 𝛼∗(9.5.2)(9.5.4)

→ Ω [•]
(𝑋,𝐷𝑋 ,𝑎) Consequence 4.18(9.5.5)

We leave it to the reader to apply Fact 5.12 (“Functoriality”) in order to check that the

restrictions of 𝜂 to 𝑋 +
indeed agree with 𝑑C𝜑 +

. □

The following criterion is a direct consequence of Lemma 9.5. In a nutshell, it asserts

that to check if a given morphism is a C-morphism, it suffices to restrict attention to those

diagrams of the form (7.1.1) where the 𝑞-morphisms 𝑎 and 𝑏 are adapted.

Corollary 9.6 (Elementary criterion for C-morphisms). Given C-pairs (𝑋, 𝐷𝑋 ) and
(𝑌, 𝐷𝑌 ) and a morphism 𝜑 : 𝑋 → 𝑌 , assume that 𝜑 (𝑋 ◦) ⊆ 𝑌 ◦ and img𝜑 ∩ 𝑌 lu ≠ ∅.
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Also, assume that every commutative diagram of the form

𝑋 𝑌

𝑋 𝑌

𝜑

𝑎, adapted 𝑏, adapted

𝜑

admits pull-back of adapted reflexive differentials. Then, 𝜑 is a C-morphism between the
C-pairs (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ).

Proof. Observation 8.5 (“being a C-morphism is local on 𝑋 and 𝑌 ”) and Lemma 2.36

(“strongly adapted covers exist locally”) allow assuming without loss of generality that 𝑋

and 𝑌 admit strongly adapted covers. As a consequence, we find that every 𝑞-morphism

to 𝑋 and 𝑌 can be refined to an adapted morphism via an elementary fibre product con-

struction. More precisely, every commutative diagram of form (7.1.1) can be extended to

a diagram of the form (9.5.1), with the additional property that 𝛼 ◦ 𝑎 and 𝛽 ◦ 𝑏 are adap-

ted for (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ), respectively. Lemma 9.5 asserts that to prove that 𝜑 admits

pull-back of adapted differentials, it suffices to show that q𝜑 admits pull-back of adapted

differentials. That, however, holds by assumption. □

9.2. Proof of Proposition 9.3. Given a diagram as in Setting 7.1,

𝑋 ◦ 𝑌 ◦

𝑋 𝑌,

𝑎◦ , 𝑞-morphism

𝜑◦

𝑏◦ , 𝑞-morphism

𝜑

we need to show that 𝜑◦
admits pull-back of adapted reflexive differentials. With this in

mind, consider common covers of 𝑌 ◦
and 𝑌 , and 𝑋 ◦

and 𝑋 respectively,

q𝑌 := normalisation of a component of 𝑌 ◦ ×𝑌 𝑌

q𝑋 := normalisation of a component of

(
𝑋 ◦ ×𝑋 𝑋

)
×
𝑌 ◦ q𝑌 .

The following diagram summarizes the situation,

(9.6.1)

q𝑋 q𝑋 q𝑌 q𝑌

𝑋 ◦ 𝑋 𝑌 𝑌 ◦

𝑋 𝑋 𝑌 𝑌 .

𝛼◦ 𝛼

q𝜑

𝛽 𝛽◦

𝑎◦ 𝑎

𝜑

𝑏 𝑏◦
𝜑◦

𝜑

As before, we use Lemma 9.5 (“Test for pull-back of adapted reflexive differentials”) and

find that it suffices to show that q𝜑 admits pull-back of adapted reflexive differentials. In

order to construct the relevant morphisms

q𝜂 : q𝜑 ∗Ω [•]
(𝑌,𝐷𝑌 ,𝛽◦𝑏 ) → Ω [•]

(𝑋,𝐷𝑋 ,𝛼◦𝑎) ,

consider the identifications

q𝜑∗Ω [•]
(𝑌,𝐷𝑌 ,𝑏◦𝛽 ) = q𝜑∗𝛽 [∗]Ω [•]

(𝑌,𝐷𝑌 ,𝑏 ) Observation 4.15, 𝑏 adapted

= q𝜑∗𝛽∗Ω [•]
(𝑌,𝐷𝑌 ,𝑏 ) local freeness(9.6.2)

= 𝛼∗𝜑 ∗Ω [•]
(𝑌,𝐷𝑌 ,𝑏 ) commutativity.
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In case • = 1, the last sheaf admits morphisms as follows,

𝛼∗𝜑 ∗Ω [1]
(𝑌,𝐷𝑌 ,𝑏 ) → 𝛼∗Ω [1]

(𝑋,𝐷𝑋 ,𝑎) 𝛼∗𝜂1

→ 𝛼 [∗]Ω [1]
(𝑋,𝐷𝑋 ,𝑎) natural(9.6.3)

→ Ω [1]
(𝑋,𝐷𝑋 ,𝑎◦𝛼 ) Observation 4.14.

In • = 𝑝 is arbitrary, take q𝜂 as the composed morphism

q𝜑 ∗Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝛽◦𝑏 ) = 𝛼

∗𝜑 ∗Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏 ) (9.6.2)

= ∧𝑝𝛼∗𝜑 ∗Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏 ) local freeness

→ ∧𝑝Ω [1]
(𝑋,𝐷𝑋 ,𝑎◦𝛼 ) ∧𝑝

(9.6.3)

→ Ω
[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎◦𝛼 ) natural

As before, we leave it to the reader to verify that the morphisms q𝜂 agree over q𝑋 +
with the

canonical pull-back morphisms 𝑑Cq𝜑+
. □

10. Examples and counterexamples

10.1. Resolution of the 𝐴1-singularity. To illustrate the use of Proposition 9.3 (“Cri-

terion for C-morphisms”), we continue our discussion on the resolution of the 𝐴1-

singularity.

Example 10.1 (Resolution of the 𝐴1-singularity). One concrete example of Setting 9.1 is

given in Diagram (8.8.1) of Example 8.8 on page 38. Continuing the notation of the ex-

ample, denote the 𝜑-exceptional locus by 𝐸 ⊊ 𝑋 and observe that the two-to-one cover 𝑎

is adapted for the pair

(
𝑋, 1

2
· 𝐸

)
. A direct application of the definitions shows

Ω [1](
𝑋, 1

2
·𝐸,𝑎

) = Ω1

𝑋
and Ω [1]

(𝑌,0,𝑏 ) = Ω1

𝑌
,

so that Ω [1]
(𝑌,0,𝑏 ) is locally free and that there exists a sheaf morphism

d𝜑◦
: 𝜑 ∗Ω [1]

(𝑌,0,𝑏 ) → Ω [1](
𝑋, 1

2
·𝐸,𝑎

)
that agrees with the standard pull-back of Kähler differentials, namely pull-back of Kähler

differentials itself. Proposition 9.3 therefore applies to say that 𝜑 yields a morphism of

C-pairs,

𝜑 :

(
𝑋, 1

2
· 𝐸

)
→

(
A2

/
±1, 0

)
.

Remark 10.2 (Kummer K3s). Example 10.1 shows in particular that the contraction morph-

ism 𝜑 : 𝑋 → 𝑌 := 𝐴
/
±1 from a Kummer K3 surface to its associated torus quotient

induces a C-morphism between

(
𝑋, 1

2
· 𝐸

)
and (𝑌, 0), if 𝐸 ⊂ 𝑋 is the 𝜑-exceptional locus.

Again, this observation will be of critical importance when we construct the Albanese of

a C-pair in a forthcoming paper.

10.2. Inclusion of boundary components. C-morphisms may take their images inside

the boundary divisors of the target space. The following example shows the simplest

setting.

Example 10.3 (Inclusion of boundary components). Consider a snc C-pair (𝑋, 𝐷) where

the Weil Q-divisor 𝐷 is of the form

𝐷 =
∑︁
𝑖

𝑚𝑖 − 1

𝑚𝑖

· 𝐷𝑖 , all𝑚𝑖 ∈ N≥2 .
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Pick one component 𝐷0 and define

𝐷𝑐
0

:=
∑︁
𝑖≠0

𝑚𝑖 − 1

𝑚𝑖

· 𝐷𝑖 |𝐷0
∈ QDiv(𝐷0).

The C-pair (𝐷0, 𝐷
𝑐
0
) is then snc, and we claim that the inclusion 𝜄 : 𝐷0 → 𝑋 is a C-

morphism between the pairs (𝐷0, 𝐷
𝑐
0
) and (𝑋, 𝐷). Since the claim is local, we may assume

without loss of generality that 𝑋 = B ⊂ C𝑛 is the unit ball, that supp𝐷 ⊊ 𝑋 is a union of

hyperplanes, and that we are given a uniformization

𝛾 : 𝑋 → 𝑋, (𝑥1, 𝑥2, . . . , 𝑥𝑛) ↦→
(
𝑥
𝑎1

1
, 𝑥

𝑎2

2
, . . . , 𝑥𝑎𝑛𝑛

)
,

where 𝑋 := B is again the unit ball. Consider the preimage 𝐷0 := 𝛾−1 (𝐷0) ⊊ 𝑋 with its

reduced structure and observe that 𝛾 |
𝐷0

: 𝐷0 → 𝐷0 is again a uniformization. We obtain

a diagram

𝐷0 𝑋

𝐷0 𝑋 .

𝜄,inclusion

𝛾 |
𝐷

0

, uniformization 𝛾 , uniformization

inclusion

Observing that

Ω [•]
(𝐷0,𝐷

𝑐
0
,𝛾 |

𝐷
0

) = Ω•
𝐷0

and Ω [•]
(𝑋,𝐷,𝛾 ) = Ω•

𝑋

and that 𝑑C𝜄 : 𝜄∗Ω [•]
(𝑋,𝐷,𝛾 ) → Ω•

𝐷0

is the restriction of Kähler differentials, Proposition 9.3

yields the claim.

10.3. Comparison of divisors. We continue with a criterion for the identity morphism

to be a C-morphism under a change of divisors. While perhaps trivial, the criterion is so

useful that it deserves to be mentioned and carefully proven.

Proposition 10.4 (Comparison of divisors). Let (𝑋, 𝐷1,𝑋 ) and (𝑋, 𝐷2,𝑋 ) be two C-pairs
on the same underlying space. Then, the following statements are equivalent.
(10.4.1) The identity morphism Id𝑋 is a C-morphism between (𝑋, 𝐷1,𝑋 ) and (𝑋, 𝐷2,𝑋 ).
(10.4.2) We have 𝐷1,𝑋 ≥ 𝐷2,𝑋 .

Proof of Proposition 10.4, (10.4.1) ⇒ (10.4.2). If 𝑥 ∈ 𝑋 is any point where

(
𝑋, 𝐷1,𝑋 + 𝐷2,𝑋

)
is nc, there exists a 𝑞-morphism 𝛾 : 𝑋 → 𝑋 where

(
𝑋,𝛾∗ (𝐷1,𝑋 + 𝐷2,𝑋 )

)
is nc, where 𝛾 is

adapted for (𝑋, 𝐷1,𝑋 ) and for (𝑋, 𝐷2,𝑋 ), and contains 𝑥 in its image. We obtain a diagram

as follows,

𝑋 𝑋

𝑋 𝑋 .

Id
𝑋

𝛾 , adapted 𝑞-morphism 𝛾 , adapted 𝑞-morphism

Id𝑋

The morphism Id
𝑋

admits pull-back of adapted reflexive differentials by assumption. In

other words, there exists an inclusion of sheaves, Ω1

(𝑋,𝐷2,𝑋 ,𝛾 ) ⊆ Ω1

(𝑋,𝐷1,𝑋 ,𝛾 ) . The definition

of Ω1

(𝑋,𝐷•,𝑋 ,𝛾 ) will then imply that the inequality 𝐷1,𝑋 ≥ 𝐷2,𝑋 holds over the open set

img(𝛾). The claim follows since 𝑥 is an arbitrary point in a big open subset of 𝑋 . □

Proof of Proposition 10.4, (10.4.2) ⇒ (10.4.1). Given a diagram as follows

𝑋1 𝑋2

𝑋 𝑋,

𝜑

𝛾1 , 𝑞-morphism 𝛾2 , 𝑞-morphism

Id𝑋
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we need to show that 𝜑 admits pull-back of adapted reflexive differentials. A few simpli-

fications can be made without loss of generality. To begin, observe that 𝜑 is 𝑞-morphism

and hence open by Reminder 2.19 on page 6. Replacing 𝑋2 with the image of 𝜑 , we may

therefore assume without loss of generality that 𝜑 is surjective. We can then invoke

Lemma 9.5, replace 𝛾2 by 𝛾2 ◦ 𝜑 and assume without loss of generality that 𝛾1 and 𝛾2 are

equal, and that 𝜑 is the identity map on 𝑋1 = 𝑋2.

With these simplifications in place, it is clear that 𝜑 admits pull-back of adapted re-

flexive differentials if and only if we have inclusions

Ω
[𝑝 ]
(𝑋,𝐷2,𝑋 ,𝛾 ) ⊆ Ω

[𝑝 ]
(𝑋,𝐷1,𝑋 ,𝛾 ) for every 𝑝.

The inequality 𝐷1,𝑋 ≥ 𝐷2,𝑋 will however guarantee that. □

10.4. C-Resolutions of singularities. Regretfully, it follows almost immediately from

the definition of C-morphism that resolutions of singularities do not always exist.

Definition 10.5 (C-Resolution of singularities). Let (𝑋, 𝐷) be a C-pair. A C-resolution

of singularities is a proper, bimeromorphic C-morphism 𝜋 : (𝑋, 𝐷) → (𝑋, 𝐷) where (𝑋, 𝐷)
is snc and 𝜋∗𝐷 = 𝐷 .

Proposition 10.6 (Necessary criterion for existence C-resolutions of singularities). Let
𝑋 be a normal analytic variety. Assume that 𝑋 is Gorenstein and that a C-resolution of
singularities 𝜋 : (𝑋, 𝐷) → (𝑋, 0) exists. Then, 𝑋 is log canonical. In particular, 𝑋 has Du
Bois singularities.

Once appropriate criteria are established, we generalize Proposition 10.6 in Corol-

lary 13.5 to locally Q-Gorenstein C-pairs with non-trivial boundary.

Proof of Proposition 10.6. Let 𝐸 ∈ Div(𝑋 ) denote the 𝜋-exceptional divisor, with its re-

duced structure. Consider the trivial diagram

𝑋 𝑋

𝑋 𝑋

𝜋

Id
𝑋

, 𝑞-morphism
Id𝑋 , 𝑞-morphism

𝜋

Definition 8.1 guarantees that 𝜑 admits pull-back of adapted reflexive differentials,

𝜋∗𝜔𝑋 = 𝜋∗
(
Ω [dim𝑋 ]

(𝑋,0,Id𝑋 )

)
Example 4.6

→ Ω [dim𝑋 ]
(𝑋,𝐷,Id

𝑋
)

pull-back

= 𝜔
𝑋
(log⌊𝐷⌋) ⊆ 𝜔

𝑋
(log𝐸) = 𝜔

𝑋
(𝐸) Example 4.6.

By definition, [KM98, Sec. 2.3], this means that discrep(𝑋, 0) ≥ −1 so that𝑋 is log canon-

ical. □

Example 10.7 (C-pair without C-resolution of singularities). For a concrete example of a

variety that is Gorenstein but not log canonical, let𝑌 ⊊ P2
be any general type curve, and

let 𝑋 ⊂ A3
be the affine cone over 𝑌 with normal bundle OP2 (1) |𝑌 , as discussed in [KS21,

App. B]. The variety 𝑋 is then normal. As a hypersurface in A3
, it is also Gorenstein.

However, we have seen in [KS21, Prop. B.3] that 𝑋 is not log canonical.

For future reference, we note the following variant of Proposition 10.6, which relates

the existence of C-resolutions of singularities to the notion of “weakly rational” singu-

larities, as introduced in [KS21, Sect. 1.4 and Def. A.1].
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Proposition 10.8 (Necessary criterion for the existence of special C-resolutions of sin-

gularities). Let 𝑋 be a C-pair with ⌊𝐷⌋ = 0. Assume that there exists a C-resolution of
singularities,

𝜋 : (𝑋, 𝐷) → (𝑋, 𝐷),
where ⌊𝐷⌋ = 0. Then, 𝑋 has weakly rational singularities in the sense of [KS21, Def. A.1].

Remark 10.9 (Rational and weakly rational singularities). If the space 𝑋 of Proposi-

tion 10.8 is Cohen-Macaulay, recall from [KS21, Sect. 1.4 and references there] that 𝑋

has weakly rational singularities if and only if it has rational singularities.

Proof of Proposition 10.8. As in the proof of Proposition 10.6, we obtain a pull-back map

for adapted reflexive differentials,

𝜋∗𝜔𝑋 = 𝜋∗
(
Ω [dim𝑋 ]

(𝑋,𝐷,Id𝑋 )

)
→ Ω [dim𝑋 ]

(𝑋,𝐷,Id
𝑋
)
= 𝜔

𝑋
.

In the language of [KS21, Sect. 1.4], this implies that the Grauert-Riemenschneider sheaf

on 𝑋 equals its dualizing sheaf,

𝜔GR

𝑋

def.

= 𝜋∗𝜔𝑋
= 𝜔𝑋 ,

which is reflexive. By definition, this means that 𝑋 is weakly rational singularities. □

Proposition 10.10 (Sufficient criterion for existence of C-resolutions of singularities).
Let (𝑋, 𝐷) be a locally uniformizable C-pair. Then, a C-resolution of singularities exists.

Remark 10.11 (Proposition 10.10 is not optimal). Proposition 10.10 is far from optimal. It

is certainly possible to bound the coefficients of the resolution pair.

Proof of Proposition 10.10. Let 𝜋 : 𝑌 → 𝑋 be a strong log resolution of the pair (𝑋, 𝐷),
with exceptional divisor 𝐸 ⊂ 𝑌 . Consider the divisor 𝐷𝑌 := 𝜋−1

∗ 𝐷 + 𝐸 ∈ Div𝑌 , where

𝜋−1

∗ 𝐷 denotes the strict transform. We claim that 𝜋 is a morphism between the C-pairs(
𝑌, 𝐷𝑌

)
and (𝑋, 𝐷). Recalling from Observation 8.5 that the claim is local on𝑋 , we assume

without loss of generality that𝑋 is uniformizable, so that a diagram of the following form

exists,

(10.12.1)

𝑌 𝑋

𝑌 𝑋,

𝜋

𝛾𝑌 𝛾𝑋 , uniformization

𝜋 , resolution

where 𝑌 is obtained as the normalization of a suitable component in the fibre product

𝑌 ×𝑋 𝑋 . Further simplifications are possible: Observation 8.5 allows assuming without

loss of generality that𝑌 and𝑌 are smooth, and that the divisors𝐷𝑌 and𝛾∗
𝑌
𝐷𝑌 have smooth

support.

Since 𝛾𝑋 uniformizes, we have seen in Example 4.6 that Ω [1]
(𝑋,𝐷,𝛾𝑋 ) is locally free. Pro-

position 9.3 therefore applies to show that 𝜋 is a morphism of C-pairs if and only if Dia-

gram (10.12.1) admits pull-back of adapted reflexive differentials. That, however, follows

almost immediately from our choice of a boundary divisor on 𝑌 and from Fact 5.9 on

page 27. To be precise, recall that Fact 5.9 equips us with a pull-back map

𝜋 ∗Ω1

𝑋

(
log𝛾∗𝑋 ⌊𝐷𝑋 ⌋

)
= 𝜋 ∗Ω [1]

(𝑋,𝐷𝑋 ,𝛾𝑋 ) 𝛾𝑌 uniformizes

→ Ω1

𝑌

(
log𝜋 ∗𝛾∗𝑋 ⌊𝐷𝑋 ⌋

)
pull-back 𝑑C𝜑(10.12.2)

= Ω1

𝑌

(
log𝛾∗𝑌𝜋

∗⌊𝐷𝑋 ⌋
)

commutativity

↩→ Ω1

𝑌

(
log𝛾∗𝑌 ⌊𝐷𝑌 ⌋

)
choice of 𝐷𝑌 .
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To prove that Diagram (10.12.1) admits pull-back of adapted reflexive differentials, we

need to show that the composed map (10.12.2) takes its image in

(10.12.3) Ω1

(𝑌,𝐷𝑌 ,𝛾𝑌 ) ⊆ Ω1

𝑌

(
log𝛾∗𝑌 ⌊𝐷𝑌 ⌋

)
.

This is clear over the complement of 𝐸, where 𝜋 and 𝜋 are isomorphic. This is also clear

over the complement of 𝜋−1

∗ 𝐷 , where𝐷𝑌 is reduced. Recalling the assumption that𝐷𝑌 has

smooth support, observe that 𝐸 and 𝜋−1

∗ 𝐷 are disjoint, so that (10.12.3) holds everywhere.

□

11. Functoriality

Observe that C-pairs form no category because they cannot be composed. If

(11.0.1) (𝑋, 𝐷𝑋 )
𝜑1−−→ (𝑌, 𝐷𝑌 )

𝜑2−−→ (𝑍, 𝐷𝑍 )

is a sequence of morphisms of C-pairs, the composition 𝜑2◦𝜑1 need not be a C-morphism

between (𝑋, 𝐷𝑋 ) and (𝑍, 𝐷𝑍 ), for the simple reason that the image of the composed

morphism might be disjoint from the open set 𝑍 lu ⊆ 𝑍 where (𝑍, 𝐷𝑍 ) is locally uniform-

izable. The following proposition asserts that this is the only obstacle for functoriality. It

implies in particular that locally uniformizable C-pairs form a category.

Proposition 11.1 (Weak functoriality). Given a sequence of morphisms between C-pairs
as in (11.0.1), assume that

img(𝜑2 ◦ 𝜑1) ∩ 𝑍 lu ≠ ∅.
Then, 𝜑2 ◦ 𝜑1 is a morphism between the C-pairs (𝑋, 𝐷𝑋 ) and (𝑍, 𝐷𝑍 ).

Proof. We apply the elementary criterion for C-morphisms spelled out in Corollary 9.6

above: assuming that we have a diagram

𝑋 𝑍

𝑋 𝑍,

𝜑

𝑎, adapted 𝑐 , adapted

𝜑2◦𝜑1

we need to show that 𝜑 admits pull-back of adapted reflexive differentials. The question

is local on 𝑋 . We can therefore shrink all relevant spaces and assume that 𝑌 is Stein.

Lemma 2.36 will then yield an adapted cover 𝑌 ↠ 𝑌 . We can thus set

q𝑌 := normalisation of a component of 𝑌 ×𝑍 𝑍,

q𝑋 := normalisation of a component of q𝑌 ×𝑌 𝑋,

and obtain a diagram as follows,

q𝑋 q𝑌 q𝑍

𝑋 𝑍

𝑋 𝑌 𝑍 .

𝛼

q𝜑1

𝛽

q𝜑2

𝛾

𝑎 𝑐

𝜑

𝜑1 𝜑2

Lemma 9.5 applies to this setting, so that we only need to show that q𝜑2 ◦ q𝜑1 admits pull-

back of adapted reflexive differentials. But each morphism q𝜑• admits pull-back of adapted

reflexive differentials individually. □
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12. Existence of categorical qotients

C-pairs admit a natural notion of a categorical quotient under the action of a finite

group. The following definitions are direct analogues of the classic definitions for normal

varieties and should not come as a surprise.

Notation 12.1 (Group action on C-pair). Let (𝑋, 𝐷𝑋 ) be a C-pair and let𝐺 be a finite group.

A 𝐺-action on (𝑋, 𝐷𝑋 ) is a 𝐺-action on 𝑋 that stabilizes the divisor 𝐷𝑋 .

Remark 12.2. The requirement that the action stabilizes 𝐷𝑋 is equivalent to the require-

ment that 𝑔∗𝐷𝑋 = 𝐷𝑋 for all 𝑔 ∈ 𝐺 . We do not require that the 𝐺-action stabilizes the

components of 𝐷𝑋 individually, nor that it fixes them pointwise.

Definition 12.3 (Categorical quotients of C-pairs). Let 𝐺 be a finite group that acts on a
C-pair (𝑋, 𝐷𝑋 ). A categorical quotient of (𝑋, 𝐷𝑋 ) by𝐺 is a surjective morphism of C-pairs,

𝑞 : (𝑋, 𝐷𝑋 ) ↠ (𝑄, 𝐷𝑄 ),

whose underlying morphism of varieties is constant on 𝐺-orbits and that satisfies the fol-
lowing universal property: if 𝜑 : (𝑋, 𝐷𝑋 ) → (𝑌, 𝐷𝑌 ) is any morphism of C-pairs whose
underlying morphism of varieties is constant on 𝐺-orbits, then 𝜑 factorizes via 𝑞,

(𝑋, 𝐷𝑋 ) (𝑄, 𝐷𝑄 ) (𝑌, 𝐷𝑌 ).𝑞

𝜑

∃!𝜓

At the level of underlying spaces, the quotient is simply the categorical quotient of a

normal analytic space, [Car57, Thm. 4]. The following construction equips the quotient

space with a suitable divisor.

Construction 12.4. Let (𝑋, 𝐷𝑋 ) be a C-pair and let𝐺 be a finite group that acts on (𝑋, 𝐷𝑋 ).
Set 𝑄 := 𝑋/𝐺 and take 𝑞 : 𝑋 → 𝑄 as the quotient morphism. For any prime Weil divisor

𝐻 ∈ Div(𝑄), choose a component of the preimage 𝐻 ′ ⊂ supp𝑞∗𝐻 and set

𝑚𝐻 := (mult𝐻 ′ 𝑞∗𝐻 ) · (multC,𝐻 ′ 𝐷𝑋 ).

Observe that the number𝑚𝐻 does not depend on the choice of 𝐻 ′
and set

𝐷𝑄 :=
∑︁

𝐻 ∈Div(𝑄 ) prime

𝑚𝐻 − 1

𝑚𝐻

· 𝐻 ∈ QDiv(𝑄).

As before, we stick to the convention that

∞ · (positive, finite) = ∞, ∞− (finite) = ∞, and ∞/∞ = 1.

Theorem 12.5 (Existence of quotients). In the setting of Construction 12.4, the morphism
𝑞 is a morphism of C-pairs, 𝑞 : (𝑋, 𝐷𝑋 ) → (𝑄, 𝐷𝑄 ), and this morphism is a categorical
quotient.

The proof of Theorem 12.5 is elementary, but the somewhat delicate notion of C-

morphism does require some attention and makes the proof a little more technical than

we would have preferred. For the reader’s convenience, we defer the proof until Subsec-

tion 12.4 and discuss a few properties of the quotient construction first.

Notation 12.6. The universal property implies immediately that categorical quotients are

unique up to unique isomorphism. We will therefore speak of “the” quotient and denote

the quotient C-pair by the symbol (𝑋, 𝐷𝑋 )/𝐺 .
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12.1. Functoriality. The universal property in the definition of “quotient” will often be

used in the following form, which we formulate separately for the reader’s convenience.

Proposition 12.7 (Functoriality). Let𝐺 be a finite group that acts on two C-pairs, (𝑋, 𝐷𝑋 )
and (𝑌, 𝐷𝑌 ). Let 𝛾 : (𝑋, 𝐷𝑋 ) → (𝑌, 𝐷𝑌 ) be a 𝐺-equivariant morphism of C-pairs. Then,
there exists an induced morphism between categorical quotients, and a commutative diagram
of morphisms between C-pairs as follows,

(𝑋, 𝐷𝑋 ) (𝑌, 𝐷𝑌 )

(𝑋, 𝐷𝑋 )
/
𝐺 (𝑌, 𝐷𝑌 )

/
𝐺.

𝛾

𝑞𝑋 , quotient 𝑞𝑌 , quotient

𝛾𝐺

Proposition 12.7 is an almost immediate consequence of the following lemma, which

we show in Section 12.3 below.

Lemma 12.8 (Quotients of uniformizable pairs). Quotients of uniformizable pairs are uni-
formizable. Quotients of locally uniformizable pairs are locally uniformizable.

Proof of Proposition 12.7. Proposition 11.1 (“Weak functoriality”) and Lemma 12.8 imply

that 𝑞𝑌 ◦𝛾 is a morphism of C-pairs. Since 𝑞𝑌 ◦𝛾 is constant on the orbits of the𝐺-action

on 𝑋 , it will factor via 𝑞𝑋 . □

12.2. Quotients as adapted covers. The following two observations are frequently use-

ful. The elementary proofs are left to the reader.

Observation 12.9 (Adapted covers vs. quotients). Let (𝑋, 𝐷𝑋 ) be a C-pair and let𝛾 : 𝑋 ↠ 𝑋

be an adapted cover that is Galois with group 𝐺 . Write

𝐷
𝑋

:=
(
𝛾∗⌊𝐷𝑋 ⌋

)
red

and (𝑋, 𝐷 ′
𝑋 ) := (𝑋, 𝐷

𝑋
)
/
𝐺.

Then, 𝐷 ′
𝑋
≥ 𝐷𝑋 . Proposition 10.4 on page 43 allows formulating this inequality by saying

that the identity induces a morphism of C-pairs,

Id𝑋 : (𝑋, 𝐷 ′
𝑋 ) → (𝑋, 𝐷𝑋 ). □

Observation 12.10 (Quotients vs. adapted covers). Let 𝐺 be a finite group that acts on a

log pair (𝑋, 𝐷𝑋 ) and let 𝛾 : 𝑋 ↠ 𝑋/𝐺 be the quotient morphism. Then, 𝛾 is a strongly

adapted cover for the quotient C-pair (𝑄,𝐷𝑄 ) := (𝑋, 𝐷𝑋 )/𝐺 . The C-cotangent sheaf

equals Ω [1]
(𝑄,𝐷𝑄 ,𝛾 ) = Ω [1]

𝑋
(log𝐷𝑋 ). □

12.3. Adapted covers, uniformizations and quotients. Proof of Lemma 12.8. The

following lemma is key to the proofs of Theorem 12.5, Proposition 12.7, and Lemma 12.8.

It might also be of independent interest.

Lemma 12.11 (Adapted covers and quotients). In the setting of Construction 12.4, let 𝛾 :

𝑋 → 𝑋 be a 𝑞-morphism. If 𝛾 is adapted for the pair (𝑋, 𝐷𝑋 ), then 𝑞 ◦𝛾 : 𝑋 → 𝑄 is adapted
for the pair (𝑄,𝐷𝑄 ) and

Ω
[𝑝 ]
(𝑋,𝐷𝑋 ,𝛾 ) = Ω

[𝑝 ]
(𝑄,𝐷𝑄 ,𝑞◦𝛾 ) for every number 𝑝.

Proof. The assertion that 𝑞 ◦ 𝛾 is adapted follows directly from the choices made in Con-

struction 12.4.

Two reflexive sheaves𝑋 agree if they agree on a big open set. Removing codimension-

two subsets from all relevant varieties, we can therefore assume without loss of generality

that all spaces are smooth and that all divisors have smooth support. We are therefore
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in the setting of Definition 3.2 (“Bundle of adapted tensors in the nc case”) where the

relevant C-cotangent sheaves are given as

Ω1

(𝑋,𝐷𝑋 ,𝛾 ) = ker

(
𝛾∗Ω1

𝑋 (log𝐷𝑋 )
𝛾∗

(residue morphism)

−−−−−−−−−−−−−−−−→ O𝛾∗𝐷𝑋,orb

)
.(12.11.1)

Ω1

(𝑄,𝐷𝑄 ,𝑞◦𝛾 ) = ker

(
𝛾∗𝑞∗Ω1

𝑄 (log𝐷𝑄 )
𝛾∗𝑞∗(residue morphism)

−−−−−−−−−−−−−−−−−→ O𝛾∗𝑞∗𝐷𝑄,orb

)
.(12.11.2)

It suffices to consider the case 𝑝 = 1 and to show equality of these sheaves only; equality

for all other values of 𝑝 will follow by local freeness.

The construction of the divisor 𝐷𝑄 has two immediate consequences. To formulate

them properly, let 𝑅 be the reduced divisor on 𝑋 obtained as the union of those compo-

nents of the ramification divisor that are not contained in the finite part of 𝐷𝑋 ,

𝑅 := (supp Ramification𝑞) \ supp𝐷𝑋,orb ∈ Div(𝑋 ).

With this notation in place, it follows from construction that

Branch𝑞 ⊆ supp𝐷𝑄 and 𝑞∗𝐷𝑄,orb = 𝐷𝑋,orb + 𝑅.

The inclusion implies in particular that 𝑞∗Ω1

𝑄
(log𝐷𝑄 ) = Ω1

𝑋
(log𝐷𝑋 + 𝑅), and (12.11.2)

simplifies to

Ω1

(𝑄,𝐷𝑄 ,𝑞◦𝛾 ) = ker

(
𝛾∗Ω1

𝑋 (log𝐷𝑋 + 𝑅)
𝛾∗

(residue morphism)

−−−−−−−−−−−−−−−−→ O𝛾∗ (𝐷𝑋,orb+𝑅)
)

= ker

(
𝛾∗Ω1

𝑋 (log𝐷𝑋 + 𝑅)
𝛾∗

(residue morphism)

−−−−−−−−−−−−−−−−→ O𝛾∗𝐷𝑋,orb
⊕ O𝛾∗𝑅

)
;

for the last equality, we use that supp𝐷𝑋,orb and supp𝑅 are disjoint by our smoothness

assumption. Recalling the standard fact that Ω1

𝑋
(log𝐷𝑋 ) is described as the kernel of the

following residue morphism,

Ω1

𝑋 (log𝐷𝑋 ) = ker

(
Ω1

𝑋 (log𝐷𝑋 + 𝑅)
(residue morphism)

−−−−−−−−−−−−−−→ O𝛾∗𝑅

)
the claim now follows. □

Proof of Lemma 12.8. We consider the uniformizable case only. Let (𝑋, 𝐷𝑋 ) be a C-pair,

let 𝐺 be a finite group that acts on (𝑋, 𝐷𝑋 ) and let (𝑄,𝐷𝑄 ) be the quotient of Construc-

tion 12.4. Finally, consider a cover𝛾 : 𝑋 → 𝑋 where

(
𝑋, (𝛾∗⌊𝐷𝑋 ⌋)reg

)
is nc. The following

statements are then equivalent.

𝛾 uniformizes (𝑋, 𝐷𝑋 ) ⇔ Ω [•]
(𝑋,𝐷𝑋 ,𝛾 ) = Ω•

𝑋
(log𝛾∗⌊𝐷𝑋 ⌋) Observation 4.9

⇔ Ω [•]
(𝑄,𝐷𝑄 ,𝑞◦𝛾 ) = Ω•

𝑋
(log𝛾∗⌊𝐷𝑋 ⌋) Lemma 12.11

⇔ Ω [•]
(𝑄,𝐷𝑄 ,𝑞◦𝛾 ) = Ω•

𝑋

(
log(𝑞 ◦ 𝛾)∗⌊𝐷𝑄⌋

)
Construction 12.4

⇔ 𝑞 ◦ 𝛾 uniformizes (𝑄,𝐷𝑄 ). Observation 4.9

The claim thus follows. □

12.4. Existence of quotients, proof of Theorem 12.5. Maintain setting and assump-

tions of Theorem 12.5 and Construction 12.4. The theorem asserts that 𝑞 is a morphism

of C-pairs and that the universal property holds. Even though the proofs of these two

statements are similar, we prefer to present the arguments separately, in two separated

steps.
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Step 1: The quotient morphism is a morphism of C-pairs. We work with Corol-

lary 9.6 (“Elementary criterion for C-morphisms”) and assume that a commutative dia-

gram of the following form is given,

𝑋 𝑄

𝑋 𝑄.

𝑞

𝛾 , adapted 𝛿 , adapted

𝑞, quotient morphism

In order to show that the quotient morphism 𝑞 is a morphism of C-pairs, we need to

show that 𝑞 admits pull-back of adapted reflexive differentials. That, however, follows

now almost directly,

Ω [•]
(𝑋,𝐷𝑋 ,𝛾 ) = Ω [•]

(𝑄,𝐷𝑄 ,𝑞◦𝛾 ) Lemma 12.11

= Ω [•]
(𝑄,𝐷𝑄 ,𝛿◦𝑞) commutativity

= 𝑞 [∗]Ω [•]
(𝑄,𝐷𝑄 ,𝛿 ) Observation 4.14.

Step 2: Universal property. Let 𝜑 : (𝑋, 𝐷𝑋 ) → (𝑌, 𝐷𝑌 ) be any morphism of C-pairs

whose underlying morphism of varieties is constant on 𝐺-orbits. Then, the universal

property of the classic categorical quotients asserts that 𝜑 factorizes via 𝑞 as a morphism

of analytic varieties,

𝑋 𝑄 𝑌,𝑞

𝜑

∃!𝜓

and we need to show that 𝜓 induces a morphism between C-pairs (𝑄,𝐷𝑄 ) and (𝑌, 𝐷𝑌 ).
As before, we work with Corollary 9.6 and assume that a diagram of the following form

is given,

𝑄 𝑌

𝑋 𝑄 𝑌 .

𝜓

𝛿 , adapted 𝜀 , adapted

𝑞, quotient morphism 𝜓

We need to show that𝜓 admits pull-back of adapted reflexive differentials. As before, we

note that this question is local on 𝑄 . We may therefore shrink 𝑄 , employ Lemma 2.36

(“Strongly adapted covers exist locally”) and assume without loss of generality that there

exists an adapted cover 𝑋 ↠ 𝑋 . Let q𝑋 = q𝑄 be a suitable component of the normalized

fibre product

(
𝑋 ×𝑄 𝑄

)
norm

. We obtain an extended diagram as follows,

q𝑋 q𝑄 q𝑌

𝑄 𝑌

𝑋 𝑄 𝑌 .

𝛾 , adapted

q𝑞 = Id

𝛿 ′ , finite

q𝜓

𝜓

𝛿 , adapted 𝜀 , adapted

𝑞, quotient morphism 𝜓

Recall Lemma 9.5 (“Test for pull-back of adapted reflexive differentials”). To show that

𝜓 admits pull-back of adapted reflexive differentials, it suffices to show that
q𝜓 admits

pull-back of adapted reflexive differentials: there exist sheaf morphisms

𝜂 :
q𝜓 ∗

(
Ω [•]

(𝑌,𝐷𝑌 ,𝑐 )

)
→ Ω [•]

(𝑄,𝐷𝑄 ,𝛿◦𝛿 ′ )
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that generically agree with the standard pull-back 𝑑C q𝜓+
of adapted reflexive differentials.

But we know by assumption that
q𝜓 ◦ q𝑞 admits pull-back of adapted reflexive differentials:

There exist sheaf morphisms

q𝜓 ∗
(
Ω [•]

(𝑌,𝐷𝑌 ,𝑐 )

)
= ( q𝜓 ◦ 𝑞)∗

(
Ω [•]

(𝑌,𝐷𝑌 ,𝑐 )

)
q𝑞 = Id

→ Ω [•]
(𝑋,𝐷𝑋 ,𝛾 )

q𝜓 ◦ q𝑞 admits pull-back

= Ω [•]
(𝑄,𝐷𝑄 ,𝑞◦𝛾 ) Lemma 12.11

= Ω [•]
(𝑄,𝐷𝑄 ,𝛿◦𝛿 ′ ) Commutativity

The claim thus follows. □

13. Pull-back and the Minimal Model Program

13.1. Pull-back of adapted reflexive tensors. In Section 8, we defined morphisms of

C-pairs are morphisms of varieties where every diagram of form (7.1.1) admits pull-back

of adapted reflexive differentials. This section discusses criteria to guarantee that dia-

grams also admit pull-back of adapted reflexive tensors. The main result, formulated in

Proposition 13.1 below, relates C-morphisms to notions of minimal model theory, and

gives severe restrictions for the existence of resolutions of singularities in the context of

C-pairs; we discuss these issues in Section 13.2 right after formulating the main result.

Proposition 13.1 (Criterion for pull-back of adapted reflexive tensors). Given a morph-
ism 𝜑 : (𝑋, 𝐷𝑋 ) → (𝑌, 𝐷𝑌 ) of C-pairs, let 𝑝 ∈ N+ be any number. Assume that there exists
an open covering 𝑌 = ∪𝑌𝑖 and adapted covers 𝛾𝑖 : 𝑌𝑖 ↠ 𝑌𝑖 where the sheaves Ω [𝑝 ]

(𝑌,𝐷𝑌 ,𝛾𝑖 ) of
adapted reflexive differentials are locally free. Then, every diagram of form (7.1.1) admits
pull-back of adapted reflexive (𝑛, 𝑝)-tensors, for every 𝑛 ∈ N+.

We will prove Proposition 13.1 in Section 13.3 on page 53.

13.2. Relation to the Minimal Model Program. We highlight one case where the as-

sumptions of Proposition 13.1 are known to hold.

Proposition 13.2 (Pull-back for morphisms to Q-Gorenstein pairs). Let 𝜑 : (𝑋, 𝐷𝑋 ) →
(𝑌, 𝐷𝑌 ) be a morphism of C-pairs where (𝑌, 𝐷𝑌 ) is locally Q-Gorenstein, where dim𝑋 =

dim𝑌 , and where 𝜑 is generically finite. If𝑚 ∈ N+ is any number, then there exists a pull-
back map

(13.2.1) 𝜑∗
(
𝜔⊗𝑚
𝑌

⊗ O𝑌

(
⌊𝑚 · 𝐷𝑌 ⌋

) )∨∨ pull-back
−−−−−−→

(
𝜔⊗𝑚
𝑋

⊗ O𝑋

(
⌊𝑚 · 𝐷𝑋 ⌋

) )∨∨
whose restriction to (

𝑌reg \ supp𝐷𝑌

)
∩ 𝜑−1 (𝑌reg \ supp𝐷𝑌 )

agrees with the standard pull-back map of Kähler differentials and their symmetric powers.

Remark 13.3. Proposition 13.2 does not assume that (𝑋, 𝐷𝑋 ) is locally Q-Gorenstein. If

canonical divisors exist, then (13.2.1) can be written in the compact form

𝜑∗O𝑌

(
𝑚 · 𝐾𝑌 + ⌊𝑚 · 𝐷𝑌 ⌋

) pull-back

−−−−−−→ O𝑋

(
𝑚 · 𝐾𝑋 + ⌊𝑚 · 𝐷𝑋 ⌋

)
,

which might be more familiar to the algebraic geometer.

Proof of Proposition 13.2. Cover 𝑌 by Stein open sets, 𝑌 = ∪𝑖𝑌𝑖 , so that canonical divisors

𝐾𝑌𝑖 exist on each of the𝑌𝑖 . Recall from Lemma 2.36 that the Stein spaces𝑌𝑖 admit strongly

adapted covers𝛾𝑖 : 𝑌𝑖 ↠ 𝑌𝑖 . The pull-back divisors𝛾∗𝑖 (𝐾𝑌𝑖 +𝐷𝑌 ) are then locallyQ-Cartier

Weil divisors on the 𝑌𝑖 . Shrinking the 𝑌𝑖 if necessary, we may assume without loss of
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generality that 𝛾∗𝑖 (𝐾𝑌𝑖 + 𝐷𝑌 ) are Q-Cartier and that suitable multiples are Cartier and

linearly trivial,

(13.4.1) O
𝑌𝑖

(
𝑚𝑖 · 𝛾∗𝑖 (𝐾𝑌𝑖 + 𝐷𝑌 )

)
� O

𝑌𝑖
, for suitable𝑚𝑖 ∈ N+.

Following [Rei80, Cor. 1.9] or [Rei87, Sect. 3.5–3.7], the isomorphisms (13.4.1) can be used

to construct index-one-covers, that is, cyclic covers 𝛽𝑖 : q𝑌𝑖 ↠ 𝑌𝑖 where (𝛾𝑖 ◦𝛽𝑖 )∗ (𝐾𝑌𝑖 +𝐷𝑌 )
is Cartier. Set 𝛼𝑖 := 𝛾𝑖 ◦ 𝛽𝑖 , 𝑛 := dim𝑋 and observe that

Ω [𝑛]
(𝑌,𝐷𝑌 ,𝛼𝑖 ) � O

q𝑌𝑖

(
𝛼∗𝑖 (𝐾𝑌𝑖 + 𝐷𝑌 )

)
is locally free. Apply Proposition 13.1 to the trivial diagram

𝑋 𝑌

𝑋 𝑌

𝜑

Id𝑋 , 𝑞-morphism Id𝑌 , 𝑞-morphism

𝜑

and recall from Example 4.6 that domain and range of associated the pull-back map

𝜂 : 𝜑∗
(
Sym

[𝑚]
C Ω [𝑛]

(𝑌,𝐷𝑌 ,Id𝑌 )

)
→ Sym

[𝑚]
C Ω [𝑑 ]

(𝑋,𝐷𝑋 ,Id𝑋 )

are identified as

Sym
[𝑚]
C Ω [𝑛]

(𝑌,𝐷𝑌 ,Id𝑌 ) =
(
𝜔⊗𝑚
𝑌

⊗ O𝑌 (⌊𝑚 · 𝐷𝑌 ⌋)
)∨∨

Sym
[𝑚]
C Ω [𝑛]

(𝑋,𝐷𝑋 ,Id𝑋 ) =
(
𝜔⊗𝑚
𝑋

⊗ O𝑋 (⌊𝑚 · 𝐷𝑋 ⌋)
)∨∨

The proof is thus finished. □

Proposition 13.2 relates the notion of a C-morphism to the notion of discrepancies

used in birational geometry, cf. [Rei87, Chapt. I.1] or [KM98, Def. 2.22]. Instead of going

into details, we note only one immediate consequence, which refines Proposition 10.6 on

page 44.

Corollary 13.5 (C-morphisms and canonical singularities, compare Proposition 10.6).
Let (𝑋, 𝐷) be a C-pair that is locally Q-Gorenstein. If a C-resolution of singularities exists,
then (𝑋, 𝐷) is log canonical. In particular, 𝑋 has Du Bois singularities.

Proof. Since the question is local on 𝑋 , we may assume without loss of generality that

(𝑋, 𝐷) is Q-Gorenstein and that a canonical divisor exists. Let 𝜋 : (𝑋, 𝐷) → (𝑋, 𝐷) be

a C-resolution of singularities, with 𝜋-exceptional divisor 𝐸 ∈ Div(𝑋 ). Let𝑚 ∈ N+
be a

number such that 𝑚 · 𝐷 is integral and 𝑚 · (𝐾𝑋 + 𝐷) is Cartier. Following Remark 13.3,

we obtain a pull-back map

𝜋∗O𝑋

(
𝑚 · 𝐾𝑋 +𝑚 · 𝐷

)
→ O

𝑋

(
𝑚 · 𝐾

𝑋
+𝑚 · 𝐷

)
pull-back

⊆ O
𝑋

(
𝑚 · 𝐾

𝑋
+𝑚 · 𝜋−1

∗ 𝐷 +𝑚 · 𝐸
)
,

where 𝜋−1

∗ 𝐷 denotes the strict transform. As in the proof of Proposition 10.6, this means

that discrep(𝑋, 𝐷) ≥ −1, so that (𝑋, 𝐷) is log canonical as claimed. □

Remark 13.6 (Converse of Corollary 13.5?). For the time being, we are unsure if a converse

of Corollary 13.5 holds and refer the reader to Section 15.4 for questions and a more

detailed discussion.
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13.3. Proof of Proposition 13.1. We prove Proposition 13.1 under the simplifying as-

sumption that there exists one single adapted cover 𝛾0 : 𝑌0 ↠ 𝑌 where Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝛾0 ) is

locally free. The proof in the general case is conceptually identical, but notationally more

involved. We assume that a number 𝑛 ∈ N+
and a diagram of the form (7.1.1) are given,

(13.7.1)

𝑋 𝑌

𝑋 𝑌 .

𝜑

𝑎, 𝑞-morphism 𝑏, 𝑞-morphism

𝜑

Set

q𝑌 := Galois closure of a connected component of the normalized fibre product 𝑌0 ×𝑌 𝑌

q𝑋 := connected component of the normalized fibre product q𝑌 ×
𝑌
𝑋

We obtain an extension of Diagram (13.7.1), as follows,

q𝑋 q𝑌 q𝑌

𝑋 𝑌 𝑌0

𝑋 𝑌 𝑌 .

q𝜑

𝑎, Galois cover 𝑏, Galois cover 𝛾0 , 𝑞-morphism

𝜑

𝑎, 𝑞-morphism 𝑏, 𝑞-morphism 𝛾0 , adapted cover

𝜑

The assumption that 𝜑 is a morphism of C-pairs equips us with a pull-back morphism of

adapted reflexive differentials,

𝜂 : 𝜑 ∗Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏 ) → Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎) .

Using the assumption that Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝛾0 ) is locally free, we find that

Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏◦𝑏 )

= Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝛾0◦𝛾0 )

= 𝛾
[∗]

0
Ω

[𝑝 ]
(𝑌,𝐷𝑌 ,𝛾0 ) = 𝛾

∗
0
Ω

[𝑝 ]
(𝑌,𝐷𝑌 ,𝛾0 )

is likewise locally free. The morphism 𝜂 therefore induces a pull-back morphism for the

sheaves of reflexive adapted (𝑛, 𝑝)-tensors on q𝑌 , for every 𝑛 ∈ N:

q𝜑∗
Sym

[𝑛]
C Ω

[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏◦𝑏 )

= q𝜑∗
Sym

[𝑛] Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏◦𝑏 )

𝑏 ◦ 𝑏 adapted, Obs. 4.12

= q𝜑∗
Sym

𝑛 Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏◦𝑏 )

locally free

= Sym
𝑛

q𝜑∗Ω
[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏◦𝑏 )

natural(13.7.2)

→ Sym
𝑛 Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎◦𝑎) Sym

𝑛 𝜂

→ Sym
[𝑛] Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎◦𝑎) natural

→ Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎◦𝑎) Observation 4.8.

This in turn yields a morphism between push-forward sheaves,

𝜑 ∗𝑏∗ Sym
[𝑛]
C Ω

[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏◦𝑏 )

→ 𝑎∗q𝜑∗
Sym

[𝑛]
C Ω

[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏◦𝑏 )

natural

→ 𝑎∗ Sym
[𝑁 ]
C Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎◦𝑎) . 𝑎∗(13.7.2)(13.7.3)
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𝐸

𝜋−1

∗ 𝑃

𝜋−1

∗ 𝑃1 𝜋−1

∗ 𝑃2

𝜋−1

∗ 𝑃3

𝑃

𝑃3

𝑃2

𝑃1

𝜋

Figure 14.1. Blow-up of the Paquerette de Mélibée

Recall from Observation 4.19 that all morphisms in (13.7.2) are morphisms of Galois-

linearized sheaves. The resulting map (13.7.3) will therefore map Galois-invariant sections

to Galois-invariant sections. We obtain the desired pull-back map as follows,

𝜑 ∗
Sym

[𝑛]
C Ω

[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏 ) = 𝜑

∗
(
𝑏∗ Sym

[𝑛]
C Ω

[𝑝 ]
(𝑌,𝐷𝑌 ,𝑏◦𝑏 )

)
Galois(𝑏 )

Lemma 4.20

→
(
𝑎∗ Sym

[𝑛] Ω
[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎◦𝑎)

)
Galois(𝑎)

(13.7.3)
Galois

(13.7.4)

= Sym
[𝑛]
C Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝑎) Lemma 4.20.

We leave it to the reader to check that the restriction of (13.7.4) to 𝑋 +
agrees with the

pull-back morphism 𝑑C𝜑+
, so that Diagram 13.7.1 really does admit pull-back of adapted

reflexive (𝑛, 𝑝)-tensors, in the sense of Definition 7.6. □

14. Relation to the literature

Morphisms between C-pairs have already been discussed in the literature, but typically

only in special settings and for C-pairs that satisfy additional assumptions. While all

these notions overlap with Definition 8.1, there is often no implication, unless we are in

the simplest setting of C-pairs with snc boundary. For completeness and future reference,

this section compares Definition 8.1 with three of the more prominent definitions used in

the literature.

14.1. Orbifold morphisms in the sense of Campana. Campana uses the following

definition in several papers.

Definition 14.1 (Orbifold morphism in the sense of Campana, [Cam11, Déf. 2.3]). Let
(𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) be two C-pairs, where 𝑌 is Q-factorial. A morphism 𝜑 : 𝑋 → 𝑌

is called orbifold morphism if img𝜑 ⊄ supp𝐷𝑌 and if every pair of prime Weil divisors,
Δ𝑋 ∈ Div(𝑋 ) and Δ𝑌 ∈ Div(𝑌 ) with img𝜑 ⊄ suppΔ𝑌 and Δ𝑋 ⊂ 𝜑−1 (Δ𝑌 ) satisfies the
inequality

(14.1.1)

(
multΔ𝑋

𝜑∗Δ𝑌

)
·
(
multC,Δ𝑋

𝐷𝑋

)
≥ multC,Δ𝑌

𝐷𝑌 .

Remark 14.2. The Q-factoriality assumption in Definition 14.1 guarantees that a mean-

ingful pull-back 𝜑∗Δ𝑌 ∈ QDiv(𝑋 ) exists.

Definition 14.1 has the drawback that it is not local in the analytic topology. The fol-

lowing examples illustrate some problems.
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Example 14.3 (Restriction of orbifold morphism to open set is no orbifold morphism). Let

𝜋 : 𝑋 → 𝑌 be the blow-up of the affine plane 𝑌 = C2
at the origin, with exceptional

divisor 𝐸 ⊆ 𝑋 . Consider the C-divisors

𝐷𝑌 :=
2

3

· 𝑃 ∈ Div(𝑌 ) and 𝐷𝑋 :=
2

3

· 𝜋−1

∗ 𝑃,

where

𝑃 :=
{
(𝑥,𝑦) : (𝑥2 + 𝑦2)2 = 𝑥3 − 3 · 𝑥𝑦2

}
∈ Div(𝑌 )

is the Paquerette de Mélibée shown in Figure 14.1. An elementary computation shows that

𝜋 is an orbifold morphism.

The situation changes if we consider a sufficiently small neighbourhood𝑈 of the origin

in𝑌 . There, 𝑃 decomposes into three components, 𝑃 = 𝑃1+𝑃2+𝑃3, and an elementary com-

putation shows that (14.1.1) is violated when we choose Δ𝑋 = 𝐸 and Δ𝑌 = 𝑃1. It follows

that the restricted morphism is not an orbifold morphism in the sense of Definition 14.1.

Example 14.4 (Orbifold morphisms cannot be glued). Let 𝑌 be a normal analytic variety

that is locally Q-factorial but not Q-factorial. Then, Id𝑌 : 𝑌 → 𝑌 is not an orbifold

endomorphism of the C-pair (𝑌, 0). Still, 𝑌 can be covered by open sets 𝑈 ⊆ 𝑌 such that

Id𝑌 |𝑈 is an orbifold morphism.

Remark 14.5 (Existence of divisors is not local). We fear that complications similar to

those of Example 14.4 arise in settings where Inequality (14.1.1) is void because there are

no global divisors in 𝑌 that can be used for Δ𝑌 . This could happen if 𝑌 is compact and of

algebraic dimension zero.

The authors of this paper feel that non-locality restricts the usefulness of Defini-

tion 14.1 in practise. The following alternative notion avoids these problems.

Definition 14.6 (Local orbifold morphism). Let (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) be two C-pairs,
where 𝑌 is locally Q-factorial. A morphism 𝜑 : 𝑋 → 𝑌 is called local orbifold morph-

ism if img𝜑 ⊄ supp𝐷𝑌 and if for every pair of sufficiently small open sets 𝑌 + ⊆ 𝑌 and
𝑋 + ⊆ 𝜑−1 (𝑌 +), the restricted morphism 𝜑 |𝑋 + : 𝑋 + → 𝑌 + is an orbifold morphism in the
sense of Definition 14.1.

Like the notion of a C-morphism, local orbifold morphisms are local in nature and

stable under removing small subsets from the source variety. The following analogue of

Observation 8.5 on page 36 is not hard to show
9
; its proof is left to the reader.

Observation 14.7 (Local nature and removing small subsets, compare with Observa-

tion 8.5). Given C-pairs (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) and a morphism 𝜑 : 𝑋 → 𝑌 such that

img𝜑 ⊄ supp𝐷𝑌 , the following conditions are equivalent.

• The morphism 𝜑 is a local orbifold morphism.

• There exist open coverings (𝑈𝑖 )𝑖∈𝐼 and (𝑉𝑗 ) 𝑗∈ 𝐽 of 𝑋 and 𝑌 , respectively, such that

every restricted morphism

𝜑 |𝑈𝑖∩𝜑−1 (𝑉𝑗 ) : 𝑈𝑖 ∩ 𝜑−1 (𝑉𝑗 ) → 𝑉𝑗

is a local orbifold morphism between the restricted C-pairs(
𝑈𝑖 ∩ 𝜑−1 (𝑉𝑗 ), 𝐷𝑋 ∩𝑈𝑖 ∩ 𝜑−1 (𝑉𝑗 )

)
and (𝑉𝑗 , 𝐷𝑌 ∩𝑉𝑗 ).

• There exists a big open subset𝑈 ⊂ 𝑋 such that the restriction 𝜑 |𝑈 is a local orbifold

morphism (𝑈 , 𝐷𝑋 ∩𝑈 ) → (𝑌, 𝐷𝑌 ). □

The notions “C-morphism” and “local orbifold morphism” are related but not identical.

The following propositions compare the notions. Together, they imply that C-morphisms

and local orbifold morphisms agree whenever the target pair is nc.

9
But watch out: Irreducibility is not a local property in the analytic topology.
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Proposition 14.8 (C-morphism to locally Q-factorial target). Let (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 )
be two C-pairs where 𝑌 is locally Q-factorial. Then, every C-morphism 𝜑 : 𝑋 → 𝑌 with
img𝜑 ̸⊂ supp𝐷𝑌 is a local orbifold morphism.

Proposition 14.9 (Local orbifold morphism to nc target). Let (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) be
two C-pairs. If the pair (𝑌, 𝐷𝑌 ) is nc, then every local orbifold morphism 𝜑 : 𝑋 → 𝑌 is a
C-morphism.

Before proving Propositions 14.8 and 14.9 below, we show by way of an elementary

example that local orbifold morphisms need not be C-morphisms in general, even if the

target is uniformizable.

Example 14.10 (Local orbifold morphisms need not be C-morphisms). Consider the space

𝑌 = C2
and let 𝐷𝑌 = 2

3
· 𝐷1 + 2

3
· 𝐷2 + 1

2
· 𝐷3 be the union of three lines passing through a

common point 𝑦 ∈ 𝑌 . Recall from Example 2.29 on page 8 that (𝑌, 𝐷𝑌 ) is uniformizable.

Let 𝜑 : 𝑋 → 𝑌 be the blow-up of𝑦 ∈ 𝑌 and set𝐷𝑋 := 𝜑−1

∗ 𝐷𝑌 + 2

3
·Exc𝜋 . An elementary

computation that we leave to the reader shows that𝜑 is an orbifold morphism for the pairs

(𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ). On the other hand, observe that

𝐾𝑋 = 𝜑∗𝐾𝑌 + Exc𝜋 and 𝐾𝑋 + 𝐷𝑋 = 𝜑∗ (𝐾𝑌 + 𝐷𝑌 ) −
1

6

· Exc𝜋.

The shift in sign implies that the canonical pull-back map (𝑑𝜑)⊗6
: 𝜑∗𝜔⊗6

𝑌
→ 𝜔⊗6

𝑋
does

not extend to a pull-back map

𝜑∗𝜔⊗6

𝑌

(
6 · 𝐷𝑌

) pull-back

−−−−−−→ 𝜔⊗6

𝑋

(
6 · 𝐷𝑋

)
Proposition 13.2 therefore implies that 𝜑 is not a C-morphism.

Proof of Proposition 14.8. We prove Proposition 14.8 only under the simplifying assump-

tion that ⌊𝐷𝑋 ⌋ = 0 and ⌊𝐷𝑌 ⌋ = 0. The proof of the general case is conceptually identical

but requires additional case-by-case handling.

Step 0: Setup and simplification. Let 𝜑 : 𝑋 → 𝑌 be a C-morphism between two C-pairs

(𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ), where 𝑌 is locally Q-factorial. Given a pair of open sets 𝑌 + ⊆ 𝑌

and 𝑋 + ⊆ 𝜑−1 (𝑌 +), where 𝑌 +
is Q-factorial, and prime divisors Δ𝑌 ⊂ 𝑌 +

and Δ𝑋 ⊆
𝜑−1 (Δ𝑌 ) ∩ 𝑋 +

, we need to verify Inequality (14.1.1) from above,

(14.11.1)

(
multΔ𝑋

𝜑∗Δ𝑌

)
·
(
multC,Δ𝑋

𝐷𝑋

)
≥ multC,Δ𝑌

𝐷𝑌 .

To this end, choose a general point 𝑥 ∈ suppΔ𝑋 and set𝑦 := 𝜑 (𝑥). For brevity of notation,

set

𝑚𝑋 := multC,Δ𝑋
𝐷𝑋 and 𝑚𝑌 := multC,Δ𝑌

𝐷𝑌 .

Replacing 𝑋 and 𝑌 by suitably small neighbourhoods of 𝑥 and 𝑦, we may assume without

loss of generality that the following holds in addition.

(14.11.2) Using the assumption that 𝑌 is locally Q-factorial, we assume that there exists a

number 𝑟 ∈ N+
and a holomorphic function 𝑓 ∈ 𝐻 0

(
𝑌 +, O𝑌

)
such that div 𝑓 =

𝑟 · Δ𝑌 .

(14.11.3) Using the choice that 𝑥 is general in suppΔ𝑋 , we assume that the divisor𝜑−1 (Δ𝑌 )
has only one component, so that Δ𝑋 = supp𝜑−1 (Δ𝑌 ).

Step 1: Construct a cover of 𝑌 . To begin the proof in earnest, choose a component

𝑌 ⊆ normalization of

{
(𝑦, 𝑧) ∈ 𝑌 × C : 𝑧𝑟 ·𝑚𝑌 = 𝑓 (𝑦)

}
and consider the associated cover 𝛾𝑌 : 𝑌 ↠ 𝑌 . The following properties hold by construc-

tion.

(14.11.4) The morphism 𝛾𝑌 is étale outside Δ𝑌 and Branch(𝛾𝑌 ) = Δ𝑌 .

(14.11.5) All components of the divisor 𝛾∗
𝑌
(Δ𝑌 ) have multiplicity𝑚𝑌 .

(14.11.6) The ramification divisor of 𝛾𝑌 equals Ramification(𝛾𝑌 ) = 1

𝑚𝑌
· 𝛾∗

𝑌
(Δ𝑌 ).
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(14.11.7) There exists a function 𝑓 ∈ 𝐻 0
(
𝑌, O

𝑌

)
such that 𝑓 𝑟 ·𝑚𝑌 = 𝑓 ◦ 𝛾𝑌 .

Using Items (14.11.6) and (14.11.7), recall from Example 3.6 on page 13 that the Kähler

differential of 𝑑 𝑓 ∈ 𝐻 0
(
𝑌, Ω1

𝑌

)
induces an adapted reflexive differential on 𝑌 , say

𝜎𝑌 ∈ 𝐻 0

(
𝑌, Ω [1]

(𝑌,𝐷𝑌 ,𝛾𝑌 )

)
⊆ 𝐻 0

(
𝑌, Ω [1]

𝑌

)
.

Step 2: Construct a cover of 𝑋 . Secondly, choose a component 𝑋 in the normalization of

𝑋 ×𝑌 𝑌 . We obtain a commutative diagram

(14.11.8)

𝑋 𝑌

𝑋 𝑌 .

𝜑

𝛾𝑋 𝛾𝑌

𝜑

Item (14.11.4) implies that the morphism 𝛾𝑋 is étale outside 𝜑−1 (Δ𝑌 )
(14.11.3)

= Δ𝑋 . Given

that Δ𝑌 is the zero-set of the function 𝑓 , this can be formulated as follows.

(14.11.9) The ramification divisor of 𝛾𝑋 is contained in the zero-locus of the function 𝑓 ◦𝜑 .

Step 3: An adapted differential on𝑋 . Since𝜑 admits pull-back of adapted reflexive differen-

tials, recall from Observation 7.10 (“Compatibility with pull-back of Kähler differentials”)

that the Kähler differential 𝑑
(
𝑓 ◦𝜑

)
∈ 𝐻 0

(
𝑋, Ω1

𝑋

)
induces an adapted reflexive differential

on 𝑋 , say

𝜎𝑋 ∈ 𝐻 0

(
𝑋, Ω [1]

(𝑋,𝐷𝑋 ,𝛾𝑋 )

)
⊆ 𝐻 0

(
𝑋, Ω [1]

𝑋

)
.

This poses conditions on the vanishing orders of the function 𝑓 ◦ 𝜑 along prime divisors

Δ
𝑋
⊆ 𝛾∗

𝑋
Δ𝑋 . To make this statement precise, choose one Δ

𝑋
, and recall that Item (14.11.9)

together with Example 3.6 on page 13 implies that

(14.11.10) multΔ
𝑋

div

(
𝑓 ◦ 𝜑

)
≥

multΔ
𝑋
𝛾∗
𝑋
Δ𝑋

multC,Δ𝑋
𝐷𝑋

.

But the left side of (14.11.10) can be computed

multΔ
𝑋

div

(
𝑓 ◦ 𝜑

)
=

multΔ
𝑋

div

(
𝑓 ◦ 𝛾𝑌 ◦ 𝜑

)
𝑚𝑋 · 𝑟 by (14.11.7)

=
multΔ

𝑋
div

(
𝑓 ◦ 𝜑 ◦ 𝛾𝑋

)
𝑚𝑌 · 𝑟 commutativity of (14.11.8)

=
multΔ

𝑋
𝛾∗
𝑋
𝜑∗Δ𝑌

𝑚𝑌

by (14.11.2)

=

(
multΔ

𝑋
𝛾∗
𝑋
Δ𝑋

)
·
(
multΔ𝑋

𝜑∗Δ𝑌

)
𝑚𝑌

functoriality

Inserting this into (14.11.10), we obtain Inequality (14.11.1), as required to end the proof

of Proposition 14.8. □

Proof of Proposition 14.9. Again we prove Proposition 14.9 under the simplifying assump-

tion that ⌊𝐷𝑋 ⌋ = 0 and ⌊𝐷𝑌 ⌋ = 0. The proof of the general case is conceptually identical

but notationally more involved.

Using Observation 14.7 to remove a suitable small subset from 𝑋 and consider a suit-

able open cover of 𝑋 and 𝑌 , it suffices to prove Proposition 14.9 under the simplifying

assumption that there exist local coordinates 𝑥• ∈ O𝑋 (𝑋 ) and 𝑦• ∈ O𝑌 (𝑌 ) such that the

following holds.

(14.12.1) The varieties 𝑋 and 𝑌 are simply connected subsets of C•.
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(14.12.2) There exist numbers 𝑛𝑖 ∈ N such that 𝐷𝑌 =
∑ 𝑛𝑖−1

𝑛𝑖
· {𝑦𝑖 = 0}.

(14.12.3) There exists a number 𝑛 ∈ N such that 𝐷𝑋 = 𝑛−1

𝑛
· {𝑥1 = 0}.

(14.12.4) We have supp𝜑∗𝐷𝑌 ⊂ {𝑥1 = 0}.
Item (14.12.4) allows writing the morphism 𝜑 in coordinates as

𝜑 : (𝑥1, 𝑥2, 𝑥3, . . .) ↦→
(
. . . , 𝑥

𝑎𝑖
1
· 𝑓𝑖 (𝑥1, 𝑥2, . . .)︸                 ︷︷                 ︸
𝑖 .th position

, . . .
)
, where all 𝑓• ∈ O∗

𝑋 (𝑋 ).

Assumption (14.12.1) allows choosing roots 𝑔• := 𝑛•
√︁
𝑓• ∈ O∗

𝑋
(𝑋 ). Setting 𝑁 := 𝑛 · ∏𝑛•,

we can then find smooth varieties 𝑋 , 𝑌 with coordinates 𝑥• ∈ O
𝑋
(𝑋 ) and 𝑦• ∈ O

𝑌
(𝑌 )

and a commutative diagram,

𝑋 𝑌

𝑋 𝑌,

𝜑

𝑎, adapted cover 𝑏, strongly adapted cover

𝜑

where

𝑎 :

(
𝑥1, 𝑥2, 𝑥3, . . .

)
↦→

(
𝑥 𝑁

1
𝑥2, 𝑥3, . . .

)
𝑏 :

(
𝑦1, 𝑦2, 𝑦3, . . .

)
↦→

(
𝑦
𝑛1

1
, 𝑦

𝑛2

2
, 𝑦

𝑛3

3
, . . .

)
𝜑 : (𝑥1, 𝑥2, 𝑥3, . . .) ↦→

(
. . . , 𝑥

𝑁 ·𝑎𝑖
𝑛𝑖

𝑖
· 𝑔𝑖

(
𝑥 𝑁

1
, 𝑥2, 𝑥3, . . .

)︸                            ︷︷                            ︸
𝑖 .th position

, . . .

)
,

so that

Ω [1]
(𝑋,𝐷𝑋 ,𝑎) =

〈
𝑥

𝑁
𝑛
−1

1
· 𝑑𝑥1, 𝑑𝑥2, . . .

〉
⊆ Ω1

𝑋
and Ω [1]

(𝑌,𝐷𝑌 ,𝑏 ) = Ω1

𝑌
.

With this description of the orbifold cotangent bundles, the following statements are

clearly equivalent.

(14.12.5)

𝜑 admits pull-back of adapted reflexive 1-differentials

⇔ ∀𝑖 : 𝑑

(
𝑥

𝑁 ·𝑎𝑖
𝑛𝑖

𝑖
· 𝑔𝑖

(
𝑥 𝑁

1
, 𝑥2, 𝑥3, . . .

) )
∈ Ω [1]

(𝑋,𝐷𝑋 ,𝑎)
(
𝑋

)
⇔ ∀𝑖 :

𝑁 · 𝑎𝑖
𝑛𝑖

− 1 ≥ 𝑁

𝑛
− 1

⇔ ∀𝑖 : 𝑎𝑖 · 𝑛 ≥ 𝑛𝑖
⇔ ∀𝑖 :

(
mult{𝑥1=0} 𝜑

∗{𝑦𝑖 = 0}
)
·
(
multC,{𝑥1=0} 𝐷𝑋

)
≥ multC,{𝑦𝑖=0} 𝐷𝑌

⇔ 𝜑 is an orbifold morphism

To finish the proof of Proposition 14.9, recall that Ω [1]
(𝑌,𝐷𝑌 ,𝑏 ) = Ω1

𝑌
is locally free. Propos-

ition 9.3 therefore applies: to show that 𝜑 is a C-morphism, it suffices to show 𝜑 admits

pull-back of adapted reflexive 1-differentials. That, however, follows from the equival-

ences (14.12.5). □

14.2. Orbifold morphisms in the sense of Lu. Morphisms of smooth C-pairs have

been considered by Lu in the influential preprint [Lu02]. At first glance, Lu’s defini-

tion [Lu02, Def. 3.7] differs conceptually from Definition 8.1: Given snc C-pairs (𝑋, 𝐷𝑋 ),
(𝑌, 𝐷𝑌 ) and a morphism 𝜑 : 𝑋 → 𝑌 , Lu’s definition of “orbifold morphism” considers
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open sets𝑈 ⊆ 𝑌 , commutative diagrams of the form

𝜑−1 (𝑈 ) 𝑈

𝑍

𝜑 |
𝜑−1 (𝑈 )

𝑎, holomorphic

𝑏, meromorphic

and compares the saturation of 𝑎∗𝜔𝑍 with the 𝜑-pull back of the saturation of 𝑏∗𝜔𝑍 .

However, later in his paper Lu characterizes “orbifold morphisms” in terms that are close

to the ideas pursued here. We reformulate his characterization in the language of the

present paper.

Proposition 14.13 (Characterization of orbifold morphisms in the sense of Lu, [Lu02,

Prop. 4.4]). Let (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) be snc C-pairs where 𝑋 and 𝑌 are projective. If 𝜑 :

𝑋 → 𝑌 is any morphism with supp𝜑−1𝐷𝑌 ⊆ supp𝐷𝑋 , then there exists a commutative
diagram of the following form,

𝑋 𝑌

𝑋 𝑌,

𝜑

𝑎, adapted cover 𝑏, adapted cover

𝜑

where 𝑋 and 𝑌 are smooth. Then, 𝜑 is an orbifold morphism if and only if the pull-back
morphism

𝑑𝜑 : 𝜑∗
(
Ω1

(𝑌,𝐷𝑌 ,𝑏 )

)
→ Ω1

𝑋 (log𝑎−1⌊𝐷𝑋 ⌋)

factors through the inclusion Ω1

(𝑋,𝐷𝑋 ,𝑎) ↩→ Ω1

𝑋
(log𝑎−1⌊𝐷𝑋 ⌋). □

Using that all spaces and pairs in Lu’s setting are smooth, the criterion for C-

morphisms spelled out in Proposition 9.3 on page 39 shows that orbifold morphisms in

the sense of Lu are morphisms of C-pairs indeed.

14.3. 𝐵-birational morphisms in the sense of Fujino. For his proof of the abundance

theorem for semilog canonical threefolds, Fujino introduced “𝐵-birational morphisms” of

pairs. Given the potential for confusion between the various notions of “morphisms of

pairs”, we briefly recall the definition even though Fujino’s notion is essentially unrelated

to the C-morphisms discussed here.

Definition 14.14 (𝐵-birational morphisms in the sense of Fujino, [Fuj00, Def. 1.5]). Let
(𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) be two Q-Gorenstein pairs where 𝑋 and 𝑌 are projective. A birational
map 𝜑 : 𝑋 d 𝑌 is called “𝐵-birational” if there exists a common resolution of singularities

𝑍 𝑍

𝑋 𝑌

𝛼 , resolution 𝛽 , resolution

𝑓

such that the following equality of Q-divisors on 𝑍 ,

𝛼∗
(
𝛼∗𝐾𝑍 + 𝐷𝑋

)
= 𝛽∗

(
𝛽∗𝐾𝑍 + 𝐷𝑌

)
,

holds for one (equivalently: every) canonical divisor 𝐾𝑍 ∈ Div(𝑍 ).

It is easily seen that 𝐵-birational maps are hardly ever morphisms of C-pairs.

Example 14.15 (𝐵-birational morphism, not a C-morphism). Consider the space 𝑌 = P2

and let 𝐷𝑌 be a line passing through a point 𝑦 ∈ 𝑌 . Let 𝜑 : 𝑋 → 𝑌 be the blow-up of
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𝑦 ∈ 𝑌 and set 𝐷𝑋 := 𝜑−1

∗ 𝐷𝑌 . Choose 𝑍 := 𝑋 , 𝛼 := Id𝑋 , and 𝛽 := 𝜑 . Fixing one canonical

divisor 𝐾𝑌 ∈ Div(𝑌 ), an elementary computation shows that

𝛼∗ (𝛼∗𝐾𝑍 + 𝐷𝑋 ) = 𝐾𝑋 + 𝐷𝑋 = 𝜑∗ (𝐾𝑌 + 𝐷𝑌 ) = 𝛽∗
(
𝛽∗𝐾𝑍 + 𝐷𝑌

)
.

It follows that 𝜑 is a 𝐵-birational morphism. However, 𝜑 is not a morphism of C-pairs.

15. Problems and open qestions

As pointed out in the introduction, this paper is the first in a series [KR24a, KR24b]

that develops the theory of C-pairs with a view towards hyperbolicity questions, entire

curves and rational points. Still, we see many other interesting directions of research and

feel that C-pairs and their adapted reflexive tensors are far from understood. We close

with a few of questions and problems that we cannot answer at present.

15.1. Adapted reflexive tensors. We feel that the pull-back results presented in Sec-

tion 5 might not be optimal. A “bigger picture” is still missing.

Question 15.1 (Pull-back for C-pairs with mild singularities). Consider a setup analogous

to Setting 5.2: Let (𝑋, 𝐷𝑋 ) be a C-pair, let (𝑌, 𝐷𝑌 ) be a nc log pair, and consider a sequence

of morphisms

𝑌 𝑋 𝑋,
𝜑 , resolution of sings. 𝛾 , 𝑞-morphism

where supp𝜑∗𝛾∗⌊𝐷𝑋 ⌋ ⊆ supp𝐷𝑌 . We ask for conditions to guarantee that a natural

pull-back morphisms for adapted reflexive differentials,

𝑑C𝜑 : 𝜑∗Ω
[𝑝 ]
(𝑋,𝐷𝑋 ,𝛾 ) → Ω

𝑝

𝑌
(log𝐷𝑌 )

exists for some or all values of 𝑝 , with universal properties similar to those discussed in

Section 5.5?

(15.1.1) Do pull-back maps exist if (𝑋, 𝐷𝑋 ) is klt?

(15.1.2) What can we say if (𝑋, 𝐷𝑋 ) is log canonical?

(15.1.3) In analogy to the results obtained in [KS21], is there a natural class of pairs (“pairs

with C-rational singularities”) that behave optimally with respect to pull-back?

Remark 15.2 (Partial results). In case where 𝑋 = 𝑋 and 𝛾 = Id𝑋 , the papers [GKKP11,

Keb13, KS21] answer Questions (15.1.1) and (15.1.2) in the positive. These results are

however insufficient to establish a meaningful theory for C-pairs.

Question 15.3 (Pull-back for forms of small degree). Maintaining the setup of Ques-

tion 15.1, we expect that adapted reflexive 𝑝-forms become easier to pull-back, the smaller

the value of 𝑝 .

(15.3.1) Are there results for particularly small values of 𝑝 that can be seen as C-

analogues of the earlier results [vSS85, Fle88]?

(15.3.2) Are there results of the form “the pull-back behaviour of adapted reflexive 𝑝-

forms follows the extension behaviour (𝑝 + 1)-forms” that could be seen as ana-

logues of [KS21, Thm. 1.4]?

Remark 15.4 (Partial results). In the special case that 𝑝 = 1, Pedro Núñez has shown in his

Ph.D. thesis [Nú23b] that a natural morphism as in (15.1.1) exists. It is however unclear at

present, if it satisfies enough universal properties to be useful in real-world applications.
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15.2. Invariants of C-pairs. As pointed out in Section 6.1, the irregularity is of funda-

mental importance when we discuss C-analogues of the Albanese in the follow-up paper

[KR24a]. Still, there are aspects that we do not fully understand.

Question 15.5 (Irregularities). Let (𝑋, 𝐷) be a C-pair where 𝑋 is compact Kähler. How

the irregularities 𝑞(𝑋, 𝐷,𝛾) depend on the choice of the cover 𝛾 : 𝑋 ↠ 𝑋? Can we say

anything about the relation between 𝑞(𝑋, 𝐷, •) and the local geometry of the covering

spaces? If 𝑋 has rational singularities, is it possible that 𝑞(𝑋, 𝐷,𝛾) = 0 for all covers

𝛾 : 𝑋 ↠ 𝑋 where 𝑋 has rational singularities, and becomes large only for covers that are

more singular?

Concerning Question 15.5, recall from [KM98, Prop. 5.13] that rational singularities

cannot cover non-rational ones!

Question 15.6 (Bogomolov-Sommese vanishing on covers of 𝑋 ). We do not expect that

Proposition 6.15 is optimal. Are there better results for pairs with mild (but worse than

uniformizable) singularities?

Note that any answer to Question 15.1 will also answer 15.6.

Problem 15.7 (Special pairs, topology and arithemtics). Establish arithmetic, topological
and geometric properties of mildly singular C-pairs that are special.

15.3. Morphisms of C-pairs. We have seen in Section 13.2 that C-resolutions of sin-

gularities will typically not exist. Still, we wonder if they do exist for mildly singular

pairs.

Question 15.8 (C-resolution of singularities, existence). Is there a C-resolution for pairs

with mild singularities better than Proposition 10.10? Is there a converse to Corol-

lary 13.5?

Question 15.9 (C-resolution of singularities, properties). If (𝑋, 𝐷) is a C and if a C-

resolution (𝑋, 𝐷) → (𝑋, 𝐷) exists, then what is the precise relation between the coef-

ficients of 𝐷 and the discrepancies of (𝑋, 𝐷)? Can the coefficients be expressed in terms

of the local fundamental group?

15.4. Birational geometry of C-pairs. Campana has studied meromorphic maps,

meromorphic fibrations and bimeromorphic maps of nc C-pairs extensively. We feel that

this part of the theory should be extended to singular pairs, in order to tie it up with

minimal model theory.

Problem 15.10 (C-bimeromorphic maps). Develop a theory of C-meromorphic and C-
bimeromorphic maps. For mildly singular pairs, prove that relevant invariants are bimero-
morphically invariant. Following Campana, characterize special pairs in terms of bimero-
morphic fibrations to C-pairs of general type.

Problem 15.11 (Special pairs). In line with Problem 15.10, follow Campana and charac-
terize mildly singular special C-pairs in terms of C-bimeromorphic fibrations to C-pairs of
general type.

Problem 15.12 (Core map). In line with Problem 15.10, follow Campana and establish a
core map for mildly singular special C-pairs. Study its properties.

15.5. C-pairs in other settings. C-pairs have been applied successfully in algebraic and

arithmetic settings. Still, we feel that a systematic treatment of C-morphisms is lacking

in many contexts.

Problem 15.13 (C-pairs in the algebraic setting). Develop a viable theory of C-pairs for
algebraic varieties over algebraically closed (or perhaps: perfect) fields of arbitrary charac-
teristic.
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Problem 15.14 (C-pairs in the arithmetic setting). Develop a viable theory of C-pairs for
algebraic varieties over global fields, perhaps following ideas of [KPS22].
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