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Abstract. Inspired by the computation of the Kodaira dimension of sym-
metric powers Xm of a complex projective variety X of dimension n ≥ 2

by Arapura and Archava, we study their analytic and algebraic hyperbolicity
properties. First we show that some (or equivalently any) Xm is rationally
connected (resp. special) if and only if so is X (except when the core of X is
a curve in the case of specialness). Then we construct dense entire curves in
(sufficiently high) symmetric powers of K3 surfaces and product of curves. We
also give a criterion based on the positivity of jet differentials bundles that im-
plies pseudo-hyperbolicity of symmetric powers. As an application, we obtain
the Kobayashi hyperbolicity of symmetric powers of generic projective hyper-
surfaces of sufficiently high degree. On the algebraic side, we give a criterion
implying that subvarieties of codimension ≤ n − 2 of symmetric powers are
of general type. This applies in particular to varieties with ample cotangent
bundles. Finally, we use a metric approach to study symmetric powers of ball
quotients.
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1. Introduction

For any smooth complex projective variety X with n = dimX ≥ 2, and an
integer m ≥ 1, let Xm be the its m-th symmetric power, defined as the quotient
of the product Xm of m copies of X by the m-th symmetric group Sm acting by
permutation of the factors. It is shown in [AA03] that under our assumption that
n ≥ 2, the singularities of Xm are canonical; this implies that if k = κ(X) is the
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Kodaira dimension of X, then the Kodaira dimension of any smooth model of Xm

is equal to mk. In particular, X is of general type, i.e. k = n, if and only if Xm

and its smooth models are of general type, i.e. κ(Xm) = nm. Now, the Green-
Griffiths-Lang conjecture claims that a given variety is of general type if and only if
it satisfies strong hyperbolicity properties with respect to entire curves or rational
points:

Conjecture 1.1 (Green-Griffiths [GG80], Lang [Lan87]). Let X be a smooth pro-
jective manifold. Then the following are equivalent:

(1) X is of general type;
(2) X is pseudo-hyperbolic i.e. there exists a proper algebraic subset Z ( X

that contains the images of all entire curves, that is, all holomorphic non-
constant maps f : C→ X;

(3) if X is defined over a number field k, then X is pseudo-arithmetically
hyperbolic i.e. there exists a proper algebraic subset Z ( X such that X−Z
contains finitely many K-rational points for any finite extension K/k.

Note that the three properties appearing in Conjecture 1.1 are birationally in-
variant among smooth projective manifolds. In view of the main result of [AA03],
this conjecture implies that a symmetric power of a variety of general type and
of dimension higher than 2, should also be pseudo-hyperbolic. More precisely, the
following conjecture should be true.

Conjecture 1.2. Let X be a complex projective variety with n = dimX ≥ 2.
Then X is pseudo-hyperbolic if and only if Xm is pseudo-hyperbolic for some, or
any, m ≥ 1.

Note that it is not necessary to ask forX to be smooth in the previous conjecture,
since pseudo-hyperbolicity is an invariant property by resolution of singularities.
Remark also that if Xm is pseudo-hyperbolic for some m, so is Xm, and thus X,
so the interesting question is to show that Xm is pseudo-hyperbolic if X is.

The second author has proposed generalizations of the Green-Griffiths-Lang con-
jectures to any X based on the specialness property and the associated core fibra-
tion. Special varieties are opposite to varieties of general type in the following
sense: they do not admit any fibration with (orbifold) base of general type, or
equivalently their core is of dimension 0 (see Section 3, and [Cam04] for details on
special varieties and the core map). Conjecturally, special varieties should satisfy
exact opposites of the last two points of Conjecture 1.1:

Conjecture 1.3 ([Cam04]). Let X be a complex projective manifold. The following
are equivalent:

(1) X is special;
(2) X admits Zariski dense entire curves;
(3) if X is defined over a number field, X admits a potentially dense set of

rational points.

Our first goal will be to study the counterpart of Conjecture 1.2 for the special-
ness property. Accordingly, we were able to derive the following result concerning
the specialness of symmetric powers from a study of the canonical fibrations of
these varieties (see Section 4):
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Theorem 1. Let X be a complex projective manifold of dimension n ≥ 2. If X is
special then so is Xm for any m > 0. Conversely, if Xm is special for some m > 0
then either X is special, or the core of X is an orbifold curve of general type of
genus at most m.

Theorem 1 follows from Theorem 12, Theorem 13, and Corollary 4.6 proved in
Section 4 below. We give there, more generally, a description of the core map of
Xm in terms of the core map of X.

Basic examples of special manifolds are those which are either rationally con-
nected, or with zero Kodaira dimension, generalizing rational and elliptic curves
respectively. The Kodaira dimension vanishes for X if and only if the same holds
for some (or any) Xm when dimX ≥ 2. Similarly:

Theorem 2. The complex projective manifold X is rationally connected if so is
some (or all) Xm.

Theorem 2 will be obtained as a byproduct of our more precise Corollary 4.2
in Section 4. In view of Conjecture 1.3, this result implies that one should ex-
pect corresponding anti-hyperbolicity properties for their symmetric powers. The
arithmetic version has already been studied in [HT00b] where the authors prove
potential density of rational points in the g-th symmetric power of generic K3 sur-
faces of degree g. In this article, we will focus on the analytic part, showing that
these symmetric powers contain dense entire curves, and are even dominated by
C2g (see Theorem 15).

In the case of products of curves, we can also obtain the following result:

Theorem 3. Let G and C be projective smooth curves of genus g(G) ≤ 1 and
g(C) > 1, and let S = G × C. Then m ≥ g(C) if and only if Sm contains dense
entire curves.

Note thatm ≥ g(C) exactly means that Sm is special; this result will be obtained
as our Theorem 14 in Section 5. As recently observed in a manuscript sent to us
by A. Levin [Lev], such symmetric powers provide negative answers to Puncturing
Problems as formulated by Hassett and Tschinkel in [HT01] in the arithmetic and
geometric setting, and which can be stated in the analytic setting as follows.

Problem 1.4. (Analytic Puncturing Problem) Let X be a projective variety with
canonical singularities and let Z be a subvariety of codimension at least 2. Assume
that there are Zariski dense entire curves on X. Is there a Zariski dense entire
curve on X \ Z ?

In the situation of Theorem 3, considering the small diagonal Z := ∆m ⊂ Sm
one easily sees (in Remark 5.2) that Zariski dense entire curves cannot avoid Z,
giving a negative answer to this problem. Notice however that no counter-example
to the analytic or arithmetic puncturing problem is known or possibly expected
when X is smooth. The intermediate case of terminal singularities seems also to
be open.

In the second part of the present paper, we study hyperbolicity properties of
symmetric powers. Conjecture 1.2 actually looks quite difficult to solve in full
generality; we chose to focus on the following particular case which seems already
interesting and nontrivial.

Problem 1.5. Let X be a complex projective manifold with dimX ≥ 2, and let
m ≥ 2. Assume ΩX is ample. Show that any Xm is pseudo-hyperbolic.
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We provide partial answers to this problem by considering instead of ΩX the
more general jet differentials bundles EGGk,r ΩX : the sections of the latter correspond
to algebraic differential equations, or equivalently to sections of lines bundles on
the jet spaces πk : XGG

k → X (see section 2.3 and [Dem97b] for an introduction
to these objects). First, we establish a criterion which ensures strong algebraic
degeneracy of entire curves in symmetric powers, meaning that the Zariski closure
of the union of entire curves, known as the exceptional set Exc(Xm), is a proper
subvariety.

Theorem 4. Let X be a complex projective manifold. Let A be a very ample line
bundle on X. Let Z ( X, and k, r, d ∈ N∗. We make the following hypotheses.

(1) Assume that

Bs
(
H0(X,EGGk,r ΩX ⊗O(−dA))

)
⊂ XGG,sing

k ∪ π−1
k (Z).

(2) Assume that d
r > 2m(m− 1).

Then Exc(Xm) 6= Xm.

In fact, there is a precise description of a proper subvariety containing the excep-
tional locus (see Theorem 16 for details). Our criterion applies to a lot of situations
where the Green-Griffiths jet bundles are known to be sufficiently positive to sat-
isfy the assumption of the base locus in Theorem 4. Thanks to all the recent work
around the Kobayashi conjecture [Bro17, Den17, Dem18, RY18, BK19], we know
that this applies in particular to generic hypersurfaces of high degree in Pn+1

C :

Theorem 5. Let n ∈ N, and let X ⊂ Pn+1
C be a generic hypersurface of degree

d ≥ 1. Let m ≥ 1 an integer satisfying:

d ≥ (2n− 1)5(2m2 + 10n− 1).

The m-th symmetric power Xm of X is then hyperbolic.

This result will be obtained in Corollary 7.9. Getting back to the general case of
complex projective manifold X of dimension n, we establish in Section 8 a criterion
ensuring that any subvariety V ⊂ Xm of codimV ≤ n − 2 is of general type (see
Theorem 20). It applies in particular to varieties with ample cotangent bundle:

Theorem 6. Let X be a complex projective manifold with n = dimX ≥ 2, and let
m ≥ 1 be an integer. Assume ΩX is ample. Then, any subvariety V ⊆ Xm such
that codimV ≤ n− 2 and V 6⊂ Xsing

m is of general type.

If we believe in the Green-Griffiths-Lang conjecture 1.1, this theorem implies
that codim Exc(Xm) ≥ n − 1 for complex manifolds with ΩX ample, thus giv-
ing in principle a strong restriction on the exceptional locus that can appear in
Problem 1.5.

This result already permits to obtain several geometric restrictions on the ex-
ceptional locus of non-hyperbolic algebraic curves in Xm. We obtain in particular
the following result (see Corollary 8.8):

Corollary 1.6. Let X be a complex projective manifold such that ΩX is ample.
Then, there exist countably many proper algebraic subsets Vk ( Xm (k ∈ N) con-
taining the image of any non-hyperbolic algebraic curve, such that codimXm(Vk) ≥
n− 1 for all k ∈ N.
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We also obtain genus estimates for curves lying on X in the spirit of [AA03,
Corollary 4]. If Y ⊂ X is a closed submanifold, we say that a generic point
[y1, . . . , yl, x1, . . . , xd−l] ∈ Yl ×Xd−l lies on an irreducible curve with genus g nor-
malization if there exist C → V a family of smooth projective curves of genus g and
a morphism f : C −→ X which is generically one-to-one on the fibers Ct, such that
the image Z of Yl ×Xd−l → Xd is dominated by the image of Sdf : SdC → Xd.

Corollary 1.7. Assume that ΩX is ample, and let Y ⊂ X be a closed submanifold.
Let 1 ≤ l ≤ d be integers. Assume that for a generic point [y1, . . . , yl, x1, . . . , xd−l] ∈
Yl ×Xd−l, there exists a curve of geometric genus g in X such that all xi and yj
lie in C. Then if

l · codimY ≤ dimX − 2,

we have g > d.

This result will be proved in Corollary 8.9. Finally, in Section 9, we give a crite-
rion for hyperbolicity in terms of the existence of a suitable negatively curved met-
ric; this criterion applies in particular to symmetric powers of quotient of bounded
symmetric domains. As an application, we obtain a hyperbolicity theorem for
symmetric products of ball quotients. Before stating it, recall that given a torsion-
free lattice with unipotent parabolic elements Γ ⊂ Aut(Bn) (n ∈ N), Mok has
given a general construction of smooth minimal compactification X of the quotient
X = Γ

∖Bn (see [Mok12]). The manifold X is obtained from X by adding to it a
finite union of abelian varieties, forming a boundary divisor D.

In the statement of the theorem (which will be proved as Corollary 9.8), we
make use of the following notation: if W ⊂ X is a subvariety of a variety X, and if
1 ≤ i ≤ m are integers, we let di(W ) = {[x1, ..., xm] ∈ Xm|x1, . . . , xi ∈ W} ⊂ Xm

(see our notation in Section 2.1).

Theorem 7. Let X = Γ
∖Bn be a ball quotient by a torsion free lattice with only

unipotent parabolic elements, and let X = X ∪D be a smooth minimal compactifi-
cation. Let m ≥ 1. Then :
(a) Let V ⊂ Xm be a subvariety with codimV ≤ n− 6 and V 6⊂ d1(D) ∪ (Xm)sing.

Then V is of general type.
(b) Let p ≥ n(m − 1) + 6, and f : Cp → Xm be a holomorphic map such that

f(Cp) 6⊂ d1(D) ∪ (Xm)sing. Then Jac(f) is identically degenerate.

The paper is organized as follows. In Section 2 we collect some preliminary
definitions and properties of symmetric powers and jet differentials. In Section 3
we recall the basic definitions and constructions related to special varieties. In
Section 4 we prove Theorem 1 and Theorem 2. In Section 5 we prove Theorem
3. In Section 6 we state some basic facts on Kobayashi hyperbolicity of symmetric
powers. In Section 7 we prove Theorem 4 and Theorem 5. In Section 8 we prove
Theorem 6, Corollary 1.6 and Corollary 1.7. Finally, in Section 9 we prove Theorem
7.

Acknowledgments. The authors would like to thank Ariyan Javanpeykar for very
interesting discussions about several themes of this paper. They also thank Aaron
Levin for sharing with them his paper on Puncturing Problems. We also thank D.
Markushevich, J.L Colliot-Thélène and V. Popov for informative exchanges relative
to Jacobian fibrations and rationality of quotients by linear actions respectively.
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2. Notation and conventions

We introduce here some notation pertaining to symmetric powers of manifolds,
that we will use in the entirety of the article.

2.1. Symmetric powers. Let X be a complex projective manifold.
(1) For any m ∈ N∗, we will denote by Xm = Sm

∖
Xm the m-th sym-

metric power of X. We let q : Xm → Xm be the natural projection.
Elements of Xm will be denoted by [x1, x2, ..., xm] (where (x1, ..., xm) ∈
Xm). Also, if s > 0,m1, . . . ,ms are positive integers such that

∑
imi =

m, and x1, . . . , xs ∈ X are pairwise distinct, we write [xm1
1 , . . . , xmss ] :=

[x1, . . . , x1, . . . , xs, . . . , xs], where each xi is repeated mi times, for i =
1, . . . , s.

(2) For any V ⊂ X and any 1 ≤ i ≤ m, we let di(V ) = {[x1, ..., xm] ∈
Xm|x1, ..., xi ∈ V }.

(3) For any 1 ≤ i ≤ m, we let Di(Xm) = {[x1, ..., xm] ∈ Xm|x1 = ... = xi} be
the i-th diagonal locus. Note that codimDi(Xm) = n(i− 1).

(4) For any divisor A on X, we will denote by A] =
m∑
i=1

pr∗iA the associated

Sm-invariant divisor on Xm. Since A] admits Sm-invariant local defining
equations, the latter are pull-backs of equations on Xm: this means that
there exists an effective Cartier divisor A[ on Xm such that q∗A[ = A].
Note that since A[ is a Cartier divisor on Xm, it induces a well-defined line
bundle.

Remark that the construction X  Xm is functorial, any holomorphic map
f : X → Y inducing a natural holomorphic map fm : Xm −→ Ym.

2.2. The Reid-Tai-Weissauer criterion. For later reference, we now recall an
important criterion for the extension of differential forms on resolutions of quotient
singularities.

Let G be a finite group acting on a complex manifold X of dimension n. The
criterion can be stated in terms of the following condition:

Condition (Ix,d). Let x ∈ X, and let d ∈ N. Let g ∈ G having order r > 1
and stabilizing x. Then there exists coordinates (z1, ..., zn), centered at x such that
g acts by

g · (z1, ..., zn) = (ζa1z1, ..., ζ
anzn),

where ζ = e
2iπ
r , and a1, ..., an ∈ J0, r − 1K. We say that the condition (Ix,d) is

satisfied, if for any such g ∈ G − {1} stabilizing x, the following holds for any
choice of d distinct elements i1, ..., id in J1, nK:

ai1 + ...+ aid ≥ r.

Note that it is always possible to find coordinates z1, . . . , zn as above by the clas-
sical lemma of H. Cartan [Car54]; whether the criterion holds or not is independent
on such a choice of coordinates.
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It is useful to state a weaker condition under which the differentials will extend
meromorphically to a resolution of singularities. Resume the same notation as
before, and let α > 0.

Condition (I′x,d,α). We say that the condition (I′x,d,α) is satisfied, if the same
statement as in Condition (Ix,d) holds, with the inequality replaced by

ai1 + ...+ aid ≥ r(1− α).

Proposition 2.1 ([Wei86, Lemma 4. p. 213]). Let d ∈ N. Assume that the
condition (Ix,d) (resp. (I′x,d,α)) holds for any point x ∈ X. Let Y = G

∖
X , and let

Ỹ be a smooth resolution of singularities of Y . Let Y ◦ be the smooth locus of Y .
Then, for any p ≥ d, and for any q ∈ N, the sections of (

∧p
ΩY ◦)

⊗q extend to
the whole Ỹ (resp. extends as meromorphic section of (

∧p
ΩỸ )⊗q with a pole of

order at most bqαc).

Remark 2.2. 1. The fact that q is arbitrary in the criterion above is crucial. Note
that if q = 1, then for any p ≥ 1, any section of

∧p
ΩY ◦ extends to Ỹ , e.g. by

[Fre71] or [GKKP10]. The proof of [Fre71] consists essentially in remarking that
(I′x,d,α) always holds for some α < 1, so bqαc = 0 in this case.

2. Proposition 2.1 is a generalization of well-known criterion proved indepen-
dently by Tai [Tai82] and Reid [Rei79] (which is simply the case p = dimX). The
proof given in [Wei86] is stated in the case where X = Hg is the Siegel upper
half-space acted upon by G = Sp(2g,Z), and where G is a cyclic group ; by an
argument of Tai [Tai82, Proposition 3.1], the cyclic case suffices to deal with the
general situation, and Weissauer’s computations can be adapted immediately to
the general case formulated above. For more details in English, the reader can see
e.g. [Cad18, Section 4].

2.3. Jet differentials. We will now recall some basic facts around the notion of
jet differentials. For more details, the reader can refer to [Dem12, §7].

Let X be a complex manifold, and k,m ∈ N be integers. We will denote the
unit disk by ∆. The Green-Griffiths vector bundle of jet differentials of order k
and degree m, is the vector bundle EGGk,mΩX → X, whose sections over a chart
U ⊂ X identify with differential equations acting on holomorphic maps f : ∆→ U ,
with adequate order and degree. Writing f = (f1, ..., fn) in local coordinates,
P (f) can be written as a holomorphic polynomial P0(f ; f ′, . . . , f (k)) in the first
k derivatives of the fi, being of degree m with respect to reparametrization, i.e.
P (g)(t) = λmP (f)(λt) if g(t) = f(λt).

For any order k ≥ 1, we can form the Green-Griffiths jet differential algebra
EGGk,• ΩX =

⊕
m≥0Ek,mΩX , and define the k-th jet space XGG

k = ProjX(EGGk,• ΩX).
We check that the elements of XGG

k are naturally identified with classes of k-jets,
i.e. k-th order Taylor expansions of holomorphic maps f : (∆, 0)→ X, up to linear
reparametrization. Each jet space is endowed with a projection map πk : XGG

k → X
and tautological sheaves OXGGk (m) (m ≥ 0), such that

(πk)∗OXGGk (m) = EGGk,mΩX

for any m ≥ 1.
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If C is a complex curve, any map f : C → X admit well-defined lifts f[k] : C →
XGG
k obtained by taking the k-th Taylor expansion at each point of C. The main

interest of jet differential equations in the study of complex hyperbolicity comes
from the following fundamental vanishing theorem, which permits to give strong
restrictions on the geometry of entire curves.

Theorem 8 ([SY96, Dem97a]). Let X be a complex projective manifold, and let A
be an ample line bundle on X. Let k,m ≥ 1, and let P ∈ H0(X,EGGk,mΩ⊗O(−A)).
Let f : C −→ X. Then f is a solution of the holomorphic differential equation P ,
i.e. P (f ; f ′, ..., f (k)) = 0.

In other words, for any entire curve f : C→ X, we have f[k](C) ⊂ B+(OXGGk (1)),
where B+ denotes the augmented base locus.

The previous theorem has strong implications in cases where global jet differ-
ential equations are numerous. In these notes, we will be able to produce such
differential equations using a basic variant of the orbifold jet differentials which
were introduced by the second and third authors in a joint work with L. Darondeau
[CDR18]. We will explain briefly how these objects can be defined in our context
at the beginning of Section 7.1.

Part 1. Specialness of symmetric powers

3. Special varieties

We collect here basic definitions and constructions related to special varieties,
while referring to [Cam04] for more details.

3.1. Special Manifolds via Bogomolov sheaves. Let X be a connected com-
plex nonsingular projective manifold of complex dimension n. For a rank-one co-
herent subsheaf L ⊂ ΩpX , denote by H0(X,Lm) the space of sections of Symm(ΩpX)
which take values in Lm at the generic point of X (where as usual Lm := L⊗m).

The Iitaka dimension of L is κ(X,L) := maxm>0{dim(ΦLm(X))}, i.e. the max-
imum dimension of the image of rational maps ΦLm : X 99K P(H0(X,Lm)) defined
at the generic point of X, where by convention dim(ΦLm(X)) := −∞ if there are no
global sections. Thus κ(X,L) ∈ {−∞, 0, 1, . . . ,dim(X)}. In this setting, a theorem
of Bogomolov in [Bog79] shows that, if L ⊂ ΩpX , then κ(X,L) ≤ p.

Definition 3.1. Let X, p > 0 as above. A rank one saturated coherent sheaf L ⊂
ΩpX is called a Bogomolov sheaf if κ(X,L) = p, i.e. if L has the largest possible
Iitaka dimension.

Definition 3.2. ([Cam04, Definition 2.1]) A nonsingular complex projective1 va-
riety X is said to be special (or of special type) if there is no Bogomolov sheaf on
X. A projective variety is said to be special if some (or any) of its resolutions are
special.

Bogomolov sheaves on X occur if f : X → Y is a fibration on Y , of general type
and dimension p > 0, indeed:

1Bogomolov theorem works in the compact Kähler setting as well, and so do the notions of
special variety and core map.
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Remark 3.3. If f : X → Y is a fibration (by which we mean a surjective morphism
with connected fibers) and Y is a variety2 of general type of dimension p > 0, then
the saturation of f∗(KY ) in ΩpX is a Bogomolov sheaf of X.

By the previous remark if there is a fibration X → Y with Y of general type
then X is nonspecial. In particular, if X is of general type of positive dimension,
X is not of special type. However, Bogomolov sheaves occur, more generally, when
f : X → Y fibres over Y , even if Y is not of general type, provided f has enough
multiple fibres.

3.2. Special Manifolds via orbifold bases. Special varieties are alternatively
characterized using the notion of orbifolds. We briefly recall the construction.

Let Z be a normal connected compact complex variety. An orbifold divisor ∆ is a
linear combination ∆ :=

∑
{D⊂Z} c∆(D) ·D, where D ranges over all prime divisors

of Z, the orbifold coefficients are rational numbers c∆(D) := (1− 1
m∆(D) ) ∈ [0, 1]∩Q

such that all but finitely many are zero. Equivalently,

∆ =
∑
{D⊂Z}

(
1− 1

m∆(D)

)
·D =

∑
j∈J

(
1− 1

mj

)
·Dj ,

where only finitely orbifold multiplicities mj := m∆(Dj) ∈ Q≥1 ∪ {+∞} are larger
than 1.

An orbifold pair is a pair (Z,∆) where ∆ is an orbifold divisor; they interpolate
between the compact case where ∆ = ∅ and the pair (Z,∅) = Z has no orbifold
structure, and the open, or purely-logarithmic case where cj = 1 for all j, and we
identify (Z,∆) with Z \ Supp(∆).

When Z is smooth and the support Supp(∆) := ∪Dj of ∆ has normal crossings
singularities, we say that (Z,∆) is smooth. When all multiplicities mj are integral
or +∞, we say that the orbifold pair (Z,∆) is integral, and when every mj is finite
it may be thought of as a virtual ramified cover of Z ramifying at order mj over
each of the Dj ’s.

Consider a fibration f : X → Z between normal connected complex projective
varieties. In general, the geometric invariants (such as π1(X), κ(X), . . .) ofX do not
coincide with the ‘sum’ of those of the base (Z) and of the generic fiber (Xη) of f .
Replacing Z by the ‘orbifold base’ (Z,∆f ) of f , which encodes the multiple fibers
of f , leads in some favorable important cases to such an additivity (on suitable
birational models at least).

Definition 3.4 (Orbifold base of a fibration). Let f : X → Z be a fibration, and let
∆ be an orbifold divisor on X. We then write f : (X,∆)→ Z to indicate that ∆ is
taken into account. We shall define the orbifold base (Z,∆f ) of (f,∆) as follows:
to each irreducible Weil divisor D ⊂ Z we assign the multiplicity m(f,∆)(D) :=
infk{tk ·m∆(Fk)}, where f∗(D) =

∑
k tk.Fk + R, R is an f -exceptional divisor of

X with f(R) ( D, and Fk are the irreducible divisors of X which map surjectively
to D via f , with fibre of multiplicity tk over the generic point of D.

Remark 3.5. Note that the integers tk are well-defined, even if X and Z are only
assumed to be normal.

2Y normal is sufficient, by considering L := f∗(i∗(KY 0 )), where i : Y 0 → Y is the injection of
the regular locus of Y .
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Let (Z,∆) be an orbifold pair. Assume that KZ + ∆ is Q-Cartier (this is the
case if (Z,∆) is smooth, for example): we will call it the canonical bundle of
(Z,∆). Similarly we will denote by the canonical dimension of (Z,∆) the Kodaira
dimension of KZ + ∆ i.e. κ(Z,KZ + ∆) := κ(Z,OZ(k.(KZ + ∆))), for k > 0 any
integer such that k.(KZ + ∆) is Cartier. Finally, we say that the orbifold (Z,∆) is
of general type if κ(Z,∆) = dim(Z).

Definition 3.6. A fibration f : X → Z with X,Z projective, X smooth and Z
normal, is said to be of general type if (Z,∆f ) of general type.

If f : X 99K Z, dim(Z) = p > 0, is only a rational fibration, we may replace
X,Z, f by birational models and assume that (Z,∆f ) is smooth. The saturated
rank-one sheaf L ⊂ ΩpX which coincides with f∗(KY ) over the regular locus of Y
has then a well-defined κ(X,L) as said in the beginning of the present subsection,
easily seen to be independent of the birational models chosen, and can be seen to
be equal to κ(Z,KZ + ∆f ) on any suitably chosen ‘neat’ birational model of f .

The non-existence of fibrations of general type in the above sense turns out to
be equivalent to the specialness condition of Definition 3.2.

Theorem 9 (see [Cam04, Theorem 2.27]). A complex projective manifold X is
special if and only if it has no rational fibrations f : X 99K Z of general type.

Let us now recall the existence of the core map (see [Cam04, Section 3] for
details). Given a smooth projective variety X there is a functorial fibration cX :
X → C(X), called the core of X such that the fibers of cX are special varieties
and the base C(X) is either a point (if and only if X is special) or an orbifold
(C(X),∆cX ) of general type. This ‘core map’ dominates birationally any fibration
f : X 99K Z with general type orbifold base, and its fibres are also the largest
special subvarieties of X going through the general point of X.

As mentioned in the introduction, the second author has proposed in [Cam04]
the following generalizations of Lang’s conjectures.

Conjecture 3.7. (1) Let X be a complex projective variety. Then, X is special
if and only if there exists an entire curve C→ X with Zariski dense image.

(2) Let X be a projective variety defined over a number field. Then, the set of
rational points on X is potentially dense if and only if X is special.

Finally, let us remark that previous conjectures (see [HT00a, Conjecture 1.2])
proposed to characterize potential density with the weaker notion of weak special-
ness.

Definition 3.8. A projective variety X is said to be weakly special if there are no
finite étale covers u : X ′ → X admitting a dominant rational map f ′ : X ′ → Z ′ to
a positive dimensional variety Z ′ of general type.

It has been shown in [CP07] and [RTJ20] that one cannot replace “special” by
“weakly-special” in Conjecture 3.7 in the analytic and function fields settings.

4. Canonical fibrations

We will now study conditions under which various canonical fibrations are pre-
served by the symmetric product. In the rest of the text, a fibration will be a
surjective morphism with connected fibres. Then, if f : X → B is a fibration, so is
fm : Xm → Bm. We denote with Ym → Xm any desingularisation of Xm.
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We shall consider the following (bimeromorphically well-defined) fibrations for
X smooth compact of dimension n:

(1) The Moishezon-Iitaka fibration J : X → B

Assuming X to be smooth compact Kähler:
(2) The ‘rational quotient’3 r : X → B.
(3) The ‘core map’ c : X → B.
Recall that [AA03] shows that if X is smooth, and if dimX ≥ 2, the singularities

of Xm are canonical, and consequently, that κ(Ym) = κ(Xm) = m.κ(X).
The goal is to extend (and exploit) [AA03] in order to show the following:

Theorem 10. Let X be smooth projective4, and let f : X → B be any one of
the three canonical fibrations f = J, r, c respectively. Assume dimB ≥ 2, then for
each of these 3 fibrations, the corresponding fibration of Ym is nothing but the m-th
symmetric product fm : Ym → Bm. Explicitly: the Moishezon-Iitaka fibration of
Ym is Jm : Ym → Bm, the rational quotient map of Ym is rm : Ym → Bm, and the
core map of Ym is cm : Ym → Bm. (When B is a curve, a simple description can
be given, too. See Theorems 11 and 12 below, as well as Remark 4.1).

Remark 4.1. The conclusion is obviously false when dimX = 1 and g(X) ≥ 2, since
qm : Xm → Xm then ramifies in codimension n = 1. One recovers a uniform state-
ment by equipping Xm with its natural orbifold structure, obtained by assigning to
each component Dj,k in Xm of the diagonal locus D2(Xm) its natural multiplicity
2. The orbifold divisor Dm :=

∑
j<k(1− 1

2 ).Dj,k on Xm has then the property that
q∗m(KXm +Dm) = KXm . In particular, κ(Xm,KXm +Dm) = m.κ(X). The divisor
Dm will appear again when we consider the core map below. Notice however that,
as soon as m ≥ 3, the orbifold divisor Dm is not of normal crossings (for m = 3 for
example, it is locally analytically a product of of disk by a plane cusp.)

Before starting the study of Jm, cm, rm, let us make some simple observations
on fm : Xm → Bm if f : X → B is a fibration (with connected fibres) between two
connected compact complex manifolds, with dim(B) ≥ 1:
1. The generic fibre of fm over a point [b1, . . . , bm] ∈ Bm is isomorphic to the

(unordered) product Xb1 × . . . Xbm if the bi are pairwise distinct. In particular,
if the generic fibre of f is rationally connected, or special, so are the generic
fibres of fm. The rational quotient map and the core map of Ym thus factorise
through rm and cm respectively.

2. If the schematic fibres Xbi are reduced, so is the fibre over [b1, . . . , bm], whatever
the bi.

3. If f has a local section over a neighborhood of each of the b′is, fm has (an
obvious) local section over a neighborhood of [b1, . . . , bm].

For f = J , the proof is an immediate consequence of [AA03]. Indeed: the
general fibre of fm is a product of fibres of J , hence has κ = 0. On the other hand,
κ(Xm) = m.κ(X) = dim(Bm). The conclusion follows.

We shall now prove the statement for the two remaining fibrations r, c.

3Also termed MRC fibration.
4For J (resp. r, c), the statement is still valid for X compact (resp. for X compact Kähler).

For J , this is simply due to the fact that [AA03] is purely local in the analytic topology. For r, c
this will be explained briefly in the next footnotes.
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4.1. The ‘rational quotient’.

Theorem 11. Let r : X → B be the rational quotient map of X, smooth complex
projective5 Then rm : Xm → Bm is the rational quotient map of Xm if dim(B) 6= 1.
If B is a curve of genus g > 0, and Rm : Xm → R(m) is the rational quotient
map, there are two cases: either m < g, then Rm = rm, R(m) = Bm, or Rm =
jacmB ◦ rm : Xm → Jac(B), where jacmB : Bm → Jac(B) is the natural Jacobian
map.

Proof. We assume X to be complex projective. Recall that r is characterised by
the fact that its fibres are rationally connected and (a smooth model of) its base
is not uniruled (by [GHS03]). Since the generic fibres of rm are products of fibres
of r, hence rationally connected, it is sufficient to show that a smooth model µ :
B′m → Bm of Bm is not uniruled if B is not a curve of positive genus. Assume
B′m were uniruled, we would then have an irreducible algebraic family of curves C ′t
covering B′m and with −KB′m

.C ′t > 0. Since the singularities of Bm are canonical,
this implies KBm .Ct < 0, where Ct := µ∗(Ct), since KB′m

= µ∗(KBm) + E′, with
E′ effective, by [AA03]. The conclusion6 now follows, using [MM86], from the fact
that KBm = (qBm)∗(KBm) is pseudo-effective (i.e. has nonnegative intersection with
any covering algebraic family of generically irreducible curves7), by lifting to Bm
the generic curve Ct.

Assume now that B is a curve of genus g > 0. Then jacmB : Bm → Jac(B) has
connected fibres generically projective spaces of dimension 0 if m ≤ g, and positive
dimension if m > g. Moreover the image of jacmB is never uniruled when m > 0.
This shows the claim, by [GHS03].

We now show how to adapt this argument when X is compact Kähler. The
rational quotient map (with maximally rationally connected fibres) still exists in
the compact Kähler case, by the compactness of the components of the Chow-Barlet
‘scheme’. Assume by contradiction that B′m is uniruled. Let then r′ : B′m → R′,
the MRC fibration of B′m: its generic fibre is thus smooth, positive-dimensional,
and rationally connected. From the last part of the preceding argument in the case
when B is projective, we conclude that Bm is covered by an analytic family of curves
(images of rational curves contained in the fibres of r′) with negative intersection
with KBm , and thus that KBm is not pseudo-effective, contradicting the fact that
KB is pseudo-effective. �

We can now prove Theorem 2 as a corollary of the previous theorem:

Corollary 4.2. A smooth projective variety X is rationally connected if and only
if so is Xm for some m, and X is uniruled if and only if so is Xm for some m,
unless X is a curve of genus g > 0, and m > g.

Proof. Indeed: the uniruledness (resp. rational connectedness) ofX is characterised
by: dim(X) > dim(B) (resp. dim(B) = 0), and dim(Bm) = m.dim(B). We thus
see that any Xm is rationally connected (resp. uniruled) if so is X. Conversely, the
preceding Theorem 11 shows that the claim holds true if dim(R(m)) = dim(Bm) =
m.dim(X). This is the case unless possibly when r : X → B fibres over a curve

5The proof still works for X compact Kähler, as explained below.
6One does not really need [MM86], since it is sufficient to show that KB′m

is pseudo-effective.
7By this, we mean an irreducible and compact complex space Γ equipped with two surjective

holomorphic maps p : Γ→ S and Γ→ X, with dim(S) + 1 = dim(Γ).
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B with g(B) > 0, and m > g. In this case, Xm is uniruled, but not rationally
connected. Thus Xm rationally connected for somem > 0 implies that X rationally
connected. On the other hand, if X is not uniruled, we have X = B is a curve, and
Xm is uniruled if and only if m > g. Hence the corollary. �

Remark 4.3. If X is unirational, so is obviously Xm, for any m > 1. It is true, but
less obvious ([Mat68], that if X is rational, then so is Xm, for any m > 1 (much
more is to be found in [CS07] and [Pop13]). From this, it follows that if X is stably
rational, then so is Xm, for m > 1 too. This naturally leads to ask about the
converses.

Question 1. Assume that Xm is unirational (resp. rational, stably rational) for
some m ≥ 2, is then, yes or no, X unirational (resp. rational, stably rational)? If
some Xm,m > 1 is rational, is X unirational?

Some specific cases are as follows.

Example 1. 1. If X is a smooth cubic hypersurface of dimension n ≥ 3, is Xm

rational for some large m?
2. If X is the double cover of P3 ramified over a smooth sextic surface, X is Fano,

hence rationally connected, but its unirationality (or not) is an open problem. Is
Xm unirational for some large m? The same question arises for X a conic bundle
over P2 with a smooth discriminant of large degree.

3. Can the Brauer group of a smooth model of Xm be estimated from the one
of X? Does it vanish for m sufficiently large if X is unirational (resp. rationally
connected)? To which extent do the Brauer groups of Xm and its smooth models
differ?

4.2. The core map.

Theorem 12. Let X be a complex projective8 manifold of dimension n ≥ 2 and
c : X → B the core map of X. If p := dim(B) 6= 1 then cm : Xm → Bm is
(bimeromorphically) the core map of Xm.

The case where B is a curve is studied in the next subsection (see also Remark
4.1).

Corollary 4.4. If n ≥ 2 and p 6= 1 then X is special if and only if so is Xm for
some m.

Indeed, X (resp. Xm) is special if and only if dim(B) = 0 (resp. dim(Bm) = 0),
and dim(Bm) = m.dim(B).

Proof of Theorem 12. Since the general fibres of cm are products of special mani-
folds they are special (it is easy to see that a product of special manifolds is special).
It is thus sufficient to show that the ‘neat orbifold base’ of cm is of general type,
knowing that so is the neat orbifold base of c. This requires some preliminary
explanation.

Recall that f : X → B is neat if there exists a bimeromorphic map u : X → X0,
with X0 smooth, such that each f -exceptional divisor is also u-exceptional, and
the complement of the open set U = B \ D ⊂ B over which f is submersive is
a snc divisor, as well as f−1(D) ⊂ X. Such a neat model of f0 : X0 99K B is

8The proof applies directly when X is compact Kähler.
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obtained by flattening f0, followed by suitable blow-ups. In this case, the support
of Df , the orbifold base of f , is snc too, and κ(B,KB + Df ) is minimal among
all bimeromorphic models of f . More precisely, κ(B,KB +Df ) = κ(X,Lf ), where
Lf := f∗(KB)sat ⊂ ΩpX , where p := dim(B), and f∗(KB)sat is the saturation of
f∗(KB) in ΩpX . See [Cam04] for details. Notice also that if c : X → B is a neat
model of some f0 : X0 99K B0, and if x ∈ X is any point, there is another neat
model f ′ : X ′ → B′ dominating9f : X → B such that x does not belong to any f ′-
exceptional divisor on X ′, and lies in the image of the smooth locus of the reduction
of a fibre of f ′. If this condition is not realised on (X, f) it is then sufficient to
suitably blow-up X, then flatten the resulting map by modifying B, and finally
take a smooth model of the resulting f . The claim of Theorem 12 then holds true
for (X, f) if it holds for (X ′, f ′).

Let c : X → B be neat with respect to u : X → X0, and let cm : Xm → Bm,
together with a smooth model c′m : X ′m → B′m of cm (i.e. X ′m, B′m are smooth
models of Xm, Bm).

Let us prove first that cm : Xm → Bm is the core map of Xm, with orbifold
base (Bm, Dfm) and Kodaira dimensionm.κ(B,Df ). This follows inductively onm
from the following easy lemma, which also shows that Dfm = ∪s∈Sms(Df×Xm−1).
Lemma 4.5. Let f : X → V, g : Y → W be neat fibrations with orbifold bases
(V,Df ), (W,Dg). Then f × g : X × Y → V × W is neat, its orbifold base is
(X × Y,Df ×W + V ×Dg), and its Kodaira dimension is κ(V,Df ) + κ(W,Dg).
Proof. If E ⊂ V ×W is an irreducible divisor mapped surjectively on both V and
W , there is only one irreducible divisor F ⊂ X×Y such that (f×g)(F ) = E, which
has multiplicity 1 in (f × g)∗(E), since over (v, w) ∈ E generic, (f × g)−1(v, w) =
Xv × Yw, reduced. The other conclusions are obtained by a similar argument. �

• We now turn to the proof of Theorem 12. Let cm : Xm → Bm be deduced
by quotient from the core map cm, and let Dcm ⊂ Xm be the direct image of Dcm

under the quotient map qB : Bm → Bm, so that Dcm = (qB)∗(Dcm). It is sufficient
to show that ρ∗(c∗m((KXm +Dcm)⊗k)) ⊂ Symk(Ωm.pX′m

) for any (or some) k > 0 such
that k.(KXm +Dcm) is Cartier, where ρ : X ′m → Xm is a smooth model of Xm.
• If p := dim(B) = 0, there is nothing to prove.
• We thus assume that p := dim(B) ≥ 2. The problem is local (in the analytic

topology) on Xm, Xm, B
m, Bm. By the observations made above, we shall assume

that the points (x1, . . . , xm) near which we treat the problem do not belong to
any c-exceptional divisor, and are regular points of the reduction of the fibre of c
containing them. The fibration c is thus given in suitable local coordinates on X
and B by the map c : (x1, . . . , xn)→ (b1, . . . bp) with bi := xtii ,∀i = 1, . . . , p, p < n,
where the support of Dc is contained in the union of the coordinate hyperplanes
bi = 0 of B, the multiplicity of bi = 0 in Dc being an integer t′i, with 1 ≤ t′i ≤
ti,∀i ≤ p, by the very definition of the orbifold base.

Since c∗
((

dbi

b
1−(1/t′

i
)

i

)⊗t′i)
= t

t′i
i .x

(ti−t′i)
i .(dxi)

⊗t′i , we see that (KB + Dc)
⊗t is

Cartier and c∗((KB +Dc)
⊗t) ⊂ Symt(ΩpX), if t = lcm{t′i}.

Thus (cm)∗((KBm + Dcm)⊗t) ⊂ Symt(ΩpmXm), this natural injection being de-
duced from the description of Dcm given above (which shows that it is snc since so is

9In the sense that there exists birational maps u′ : X′ → X and β′ : B′ → B such that
f ◦ u′ = β′ ◦ f ′.
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Dc). The saturation of the image of this injection inside Symt(ΩpmXm) is the line bun-
dle generated by T := (w1∧· · ·∧wm)⊗t, where wj := dx1,j∧· · ·∧dxp,j ,∀j = 1, . . . ,m.
Here (x1,j , . . . , xn,j) are the local coordinates near the point zj ∈ X, on the j-th
component Xj

∼= X of Xm near the point (z1, . . . , zm).
It is sufficient (considering separately the distinct points of the set {z1, . . . , zm})

to deal with the case where zj = zk,∀j, k ≤ m.
The operation of Sm on the coordinates xi,j , i ≤ n, j ≤ m fixes the set of coor-

dinates xi,j , i ≤ p, j ≤ m and induces on the vector space ⊕jVj := ⊕i,jC.xi,j , j ≤ p
they generate a representation which is a direct sum of p copies of the regular
representation.

The conclusion then follows from Proposition 2.1. One checks the conditions10

given in [Wei86] by using the (purely algebraic) proof of Prop.1, p. 1370, of [AA03],
which says that if ρ : Sm → Gl(⊕j=mj=1 V ) is a representation which is the direct
sum of p copies of the regular representation, where V is a complex vector space
of dimension p ≥ 2, then σ(g) = n

2 .r.(
∑k=s
k=1(rk − 1)) ≥ r, for any g ∈ Sm which is

the product of s non-trivial disjoint cycles of lengths rk, and r := lcm((rk)′s) is the
order of g. Here σ(g) :=

∑
h ah, if the eigenvalues of ρ(g) are ζah , where ζ is any

complex primitive r-th root of the unity, and 0 ≤ ah < r for any h. �

4.3. The core map of Xm when the base of c is a curve. We now assume
that p := dim(B) = 1. Let c : X → B be the core map, and (B,Dc) its orbifold
base. When Dc = 0, the situation is easy:

Theorem 13. Assume that the core map c : X → B maps onto a curve B, and
that its orbifold-base divisor Dc = 0. Then cm : Xm → Bm is the core map if
m < g, and Xm is special if m ≥ g.

Proof. Since Dc = 0, the fibration c : X → B, and so cm, has everywhere local
sections, thus the same is true for cm, and hence for any smooth birational model of
cm. The conclusion thus follows from the fact that Bm is of general type if m < g,
and special if m ≥ g. �

In the general case, we have a weaker statement:

Corollary 4.6. If c : X → B is the core map, with B a curve, there is an integer
g(B,Dc) > 0 such that Xm is special if m ≥ g(B,Dc). Moreover, Xm is not special
if m < g(B).

Proof. By assumption, the orbifold curve (B,Dc) is of general type, hence ‘good’,
meaning that there exists a finite Galois cover h : B̃ → B which ramifies at order
t′ over each point b ∈ Dc ⊂ B, b of multiplicity t′ in Dc. The normalisation
H : X̃ → X of the fibre-product X ×B B̃ comes equipped with c̃ : X̃ → B̃, which
is its core map, since this fibration has everywhere local sections.

If m ≥ g(B̃), then X̃m, and so also Xm, is special. This shows the first claim.
The second claim follows from the fact that Bg(B)−1 is the Θ divisor on the

Jacobian of B, and so it is of general type. If we now take m ≤ (g(B)− 1), Bm is
still of general type, as seen inductively on m = 1, . . . , g(B) − 2 by contradiction,
because the images of {a} × Bm, a ∈ B in Bm+1 by the natural addition map are

10The simpler form of our tensor T reduces the conditions, for a given g, in the proof-not the
statement-of Lemma 4 of [Wei86] to a single one: σ(g) ≥ r (in loc.cit the data `, d,N,m correspond
to t, pm, n, r here, respectively.)
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injective and cover Bm+1 when a ∈ B varies. Since Xm fibres over Bm, we get that
Xm is not special for m ≤ g(B)− 1. �

Remark 4.7. It is possible to show a more precise result (not used here): if δ :=
deg(Dc), then Xm is special for m ≥ g(B) + δ, and non-special otherwise.

It is now easy to put all the previous results together to get Theorem 1 as a more
synthetic statement.

Proof of Theorem 1. The direct implication follows from Corollary 4.4, while the
converse implication is a consequence of Theorem 13, and Corollary 4.6. �

5. Dense entire curves in symmetric powers

5.1. Dense entire curves in Symm(G×C). Let G (resp. C) be a curve of genus
g(G) ≤ 1 (resp. g := g(C) > 1), and S = G × C, then Sm is special if and only
if m ≥ g, which we assume from now on. Theorem 13 shows that Sm is ‘special’
(hence ‘weakly-special’), while of course, Sm is not ‘weakly special’. This section is
devoted to the proof of Theorem 3: Sm contains (lots of) entire curves h : C→ Sm
with dense (not only Zariski-dense) image if (and only if) m ≥ g. Note indeed that
if m < g, then Sm fibres over Cm by means of its core map, which implies that the
entire curves on Sm are contained in the fibres.

The statement of Theorem 3 was suggested by Ariyan Javanpeykar as a test
case for the conjecture by the second named author, that special manifolds should
contain dense entire curves. The arithmetic counterpart were that Sm is ‘potentially
dense’ if defined over a number field. Theorem 3 can be obtained as a consequence
of the following more precise result:

Theorem 14. If S = G× C is as above, the following are equivalent:
1. m ≥ g,
2. Sm is special,
3. Sm contains dense entire curves.

Proof. We shall assume here that G = P1, the proof when G is an elliptic curve
being completely similar (just replacing C ⊂ P1 by C → G the universal cover).
Observe that Cm contains dense entire curves, since it fibres surjectively over Jac(C)
as a Pr-bundle, with r := m− g, over the complement in Jac(C) of a Zariski-closed
subset of codimension at least 2.

Take a dense entire curve f : C → Cm, let V ⊂ C × C be the graph of the
family of m-tuples of points of C parameterized by C via f (i.e. V := {w :=
(z, c)|c ∈ C, c ∈ f(z)}. The map π : V → C sending w = (z, c) to z is thus
proper, open and of geometric generic degree m. In particular, V is a Stein curve
(not necessarily irreducible). Let F : V → C be the projection on the second
factor. Let g : V → C ⊂ P1 = G be any holomorphic map. The product map
g × F : V → C × C ⊂ G × C = S is thus well-defined. We now define the map
h : C→ Sm by sending z ∈ C to the m-tuple of S defined by: (g×F )(π−1(z)) ⊂ S.

We now just need to check that the map g : V → C can be chosen such that
h(C) ⊂ Sm is dense there. Note first that if (zn)n>0 is a any discrete sequence of
pairwise distinct complex numbers such that π : V → C is unramified over each
zn, and if, for each n > 0, (tn,1, . . . , tn,m) is an m-tuple of complex numbers, there
exists a holomorphic map g : V → C such that g(wn,i) = tn,i,∀n > 0, i = 1, . . . ,m,
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where (wn,1 = (zn, cn,1), . . . , wn,m = (zn, cn,m)) = π−1(zn), and (cn,1, . . . , cn,m) :=
f(zn) ∈ Cm (the ordering being arbitrarily chosen).

It is now an elementary topological fact that the sequences (tn,1, . . . , tn,m), n > 0
can be chosen in such a way that the sequence (sn,1, . . . , sn,m)n>0 ∈ Sm is dense
in Sm, where sn,i := (tn,i, cn,i) ∈ S, ∀n > 0, i = 1, . . . ,m. �

Remark 5.1. The preceding arguments work more generally for X = G× C, when
C,m are as above, but G enjoys the following property: for any smooth complex
Stein curve V → C proper over C, and any sequence of distinct points wn ∈W, tn ∈
G, there exists a holomorphic map g : V → G such that g(wn) = tn,∀n.

This property is satisfied for G a complex torus or a unirational manifold. The
same arguments would show the same result for G rationally connected if one
could answer positively the following question, answered positively in [CW19], when
V = C:

Question: For m,C, π : V → C defined as above, let wn ∈ V, tn ∈ G,n ∈ Z>0

be a sequence of points. Assume that the points π(wn) ∈ C are all pairwise distinct.
Does there exist a holomorphic map g : V → G such that g(wn) = tn,∀n if G is
rationally connected?

Remark 5.2. Let now ∆(m) ⊂ Sm be the ‘small diagonal’, consisting of m-tuple of
points of which 2 at least coincide. Thus (Sm)∗ := Sm \∆(m) admits a surjective
(but non-proper) map to Cm.

Let ∆m ⊂ Sm be defined as: ∆m := D2(Sm) = q(∆(m)). We thus have, too:
∆(m) = q−1(∆m). The restricted map q : (Sm)∗ → (Sm)∗ := Sm \ ∆m is thus
proper and étale.

Let d(Sm)∗ := dSm|(Sm)∗ (by [Kob98]) be the Kobayashi pseudometric on (Sm)∗.
Since the Kobayashi pseudometric on Sm is the inverse image of that on Cm by
the natural projection γm : Sm → Cm, any entire curve h : C → Sm (and so even
more in (Sm)∗) has to be contained in some fibre of γm. Moreover, the Kobayashi
pseudometric on (Sm)∗ is comparable to its inverse image in (Sm)∗ (and can be
explicitly described). This shows that any entire curve in (Sm)∗ is contained in the
image by q of a fibre of γm, and is in particular algebraically degenerate (although
there are lots of dense entire curves on Sm, none of these avoids ∆m).

This gives a counterexample to an analytic version of the ‘puncture problem’ of
[HT01], similar to the arithmetic one of [Lev].

5.2. C2g-dominability of S[g], the g-th symmetric product of generic pro-
jective K3-surfaces. Let S be a smooth projectiveK3-surface with11 Pic(S) ∼= Z,
generated by an ample line bundle L of degree 2(g−1), g > 1. Such K3-surfaces are
thus generic among projective K3-surfaces admitting a primitive ample line bundle
of degree 2.(g − 1).

The objective is to prove the following

Theorem 15. For any such S, there is a (transcendental) meromorphic map h :
C2g 99K Sg whose image contains a nonempty Zariski open subset U of Sg (we say
that Sg is "C2g-dominable"). In particular, for any countable subset P of U , there
is an entire curve on Sg whose image contains P . If P is dense in Sg, so is the
image of this entire curve.

11with some more work, it is probably possible to extend the next result to any projective
K3-surface, by taking for L an ample and primitive line bundle with g minimal.
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Remark 5.3. 1. The proof rests on a suitable abelian fibration Sg 99K Pg. Our
result may thus be seen as analog to the case when S is an elliptic K3 surface (over
P1) and g = 1, shown in [BL00].

2. Our result is analogous to the arithmetic situation treated by [HT01].
3. Since Sg is special, Theorem 15 solves in a stronger form one of the conjectures

of [Cam04] in this particular case.
4. One may expect the conclusion of Theorem 15 to hold for S[k], any k > 1 and

any K3-surface (projective or not).

Before starting the proof, we recall some of the objects which have been attached
to such a pair (S,L).

The Hilbert scheme of g points: The Hilbert scheme S[g] of points of length
g on S, equipped with the Hilbert to Chow birational morphism δ : S[g] → Sg,
is known to be smooth ([Fog68], Theorem 2.4) and holomorphically symplectic
[Bea83]).

The Relative Jacobian: The line bundle L determines P(H0(S,L))∗) := Pg,
the g-dimensional projective space (by Riemann-Roch and Kodaira vanishing). The
linear system |L| is base-point free and the associated map ϕ : S → Pg is an
embedding for g ≥ 3 (a double cover ramified over a sextic for g = 2). For each
t ∈ Pg, the corresponding zero locus of a non-zero section of |L| is an irreducible
and reduced (by the cyclicity of Pic(S) assumption) curve of genus g denoted
Ct. The incidence graph of this family of curves is denoted by γ : C → Pg. For
d ∈ Z, the relative Jacobian fibration jd : Jd → Pg has fibre over t the Jacobian
Jdt of degree d line bundles on Ct. The Jacobian J0

t of degree 0 line bundles on
Ct (isomorphic to Jdt by tensorising with any given line bundle of degree d) is a
complex Hausdorff Lie group of dimension g quotient ofH1(Ct,OCt) by the (closed)
discrete subgroup H1(Ct,Z) ([BPVdV84, II.2, Proposition (2.)]). Thus, denoting
with j0 : J0 → Pg the relative Jacobian of degree 0 (instead of d) line bundles
on the C ′ts, and V := R1γ∗(OC) → Pg, this sheaf is locally free and thus a vector
bundle w : V → Pg of rank g on Pg. By [Gro62, Theorème 3.1], the relative Picard
scheme is separated12, and so the relative discrete group R1γ∗(Z)→ Pg is closed in
V . Taking the quotient, we get:

Lemma 5.4. There is a holomorphic and surjective unramified map H : V → J0

over Pg.

The compactified Jacobian: For d ∈ Z, this is the compactification j̄d : Jd →
Pg of Jd over Pg obtained as a component of the moduli space of simple sheaves on
S ([Muk84]). This variety is compact smooth, holomorphically symplectic and, for
d = g, birational to S[g] ([Bea91, Proposition 3]). We denote with σ : S[g] 99K Jg

this birational equivalence.
The covering by singular elliptic curves. By [BPVdV84, VIII, Theorem

23.1] (see references there for the original proofs), there is a nonempty curve in
Pg parametrizing (singular) curves C ′ts with elliptic normalizations. This family
(and each of its components) covers S. Choosing g generic (normalised) members
E1, . . . , Eg of such an irreducible family provides a product ε : E := E1×· · ·×Eg ⊂
Sg. By [HT01, proof of Theorem 6.1], the composed projection j̄g◦σ◦ε : E → Pg is a
(meromorphic) multisection of the (meromorphic) fibration τ := (j̄g)◦σ : S[g] → Pg.

12We thank D. Markushevich for this reference and helpful comments.
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This fact is actually easy to prove, since if Ct is smooth, it cuts each of the E′is
in finitely many distinct points, and so the intersection of E with Cgt is finite, and
surjective on the fibre of Sg over Pg.

Proof. We can now prove Theorem 15. For any complex manifolds M,R equipped
with a holomorphic map µ : M → Pg, r : R→ Pg, we denote with R(M) := R ×Pg

M , equipped with the projections µM : R(M) → M, rM : R(M) → R . This, ap-
plied toR = V,R = Jd, R = S[g](M), gives the fibre products V (M), Jd(M), S[g](M).

We have two meromorphic and generically finite maps ε : E 99K S[g], and σ ◦ ε :
E 99K Jg. Denote with Et the fibre of E over t ∈ Pg. We get a birational map
β : Jg(E) 99K J0(E) over E by sending a generic pair (j, (e1, . . . , eg)t) ∈ Jgt × Et
to j ⊗ λ−1, if λ ∈ Jgt is the line bundle on Ct with a nonzero section vanishing on
the g points ei.

Let π : E′ → E be a modification making these maps holomorphic. Let wE :
V (E′) → E′ be the rank-g vector bundle on E′ lifted from w : V → Pg. We get
also a natural holomorphic map, unramified and surjective HE : V (E′) → J0(E′)
over E′. Let E := π∗(V ):this is a rank-g coherent sheaf on E, and there is a natural
evaluation map: π∗(E)→ V over E′.

Let now ρ : E → E be the universal cover, so that E ∼= Cg. Let π′ : E′ ×E E →
E be deduced from π : E′ → E by the base change ρ. Hence π′ is a proper
modification. The sheaf ρ∗(E) on E is coherent, hence generated by its global
sections since E is Stein. Let W ⊂ H0(E, ρ∗(E)) be a vector subspace of dimension
g which generates ρ∗(E) at the generic point of E, and let ev : W×E ∼= C2g → V (E′)
be the resulting meromorphic and bimeromorphic map, obtained from the injection
π′∗ : H0(E, ρ∗(E))→ H0(E′ ×E E, V (E′)).

We thus obtain a dominating meromorphic map C2g → S[g] by composing ev
with the bimeromorphic maps between J0(E′), Jg(E′), S[g](E′), and finally project-
ing S[g](E′) onto S[g].

This completes the proof of Theorem 15. �

Part 2. Hyperbolicity of symmetric powers

6. A remark on the Kobayashi pseudometric

For any (irreducible) complex space Z, let dZ be its Kobayashi pseudo-distance
(see [Dem12, §1. A] for the proper definition). We say that Z is generically hyper-
bolic if dZ is a metric on some nonempty Zariski open subset of Z.

Question 2. Assume X is smooth, compact and generically Kobayashi hyperbolic
with n > 1. Is then Xm is generically Kobayashi hyperbolic for any m > 0?

Let us make one remark in this context. Let (Xm)∗ ⊂ Xm be the Zariski open
subset consisting of ordered m-tuples of distinct points of X. The complement
of (Xm)∗ has codimension n ≥ 2 in Xm. By [Kob98, Theorem 3.2.22], we have
dXm|(Xm)∗ = d(Xm)∗ . Let qm : Xm → Xm denote the quotient map, and X∗m :=
qm((Xm)∗), so that X∗m has a complement of codimension n in Xm as well, which
is the singular set of Xm. Moreover, (Xm)∗ = q−1

m (X∗m). From [Kob98, 3.1.9 and
3.2.8], we get:

dX∗m([x1, . . . , xm], [y1, . . . , ym]) = infs∈Sm{maxi=1,...,m{dX(xi, ys(i))}}.
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Although the complement Xsing
m of X∗m in Xm has codimension n ≥ 2 (and the

singularities are canonical quotient), it is not true that dXm|X∗m = dX∗m in general,
as the following example shows. Even more, the pseudometric may degenerate away
from Xsing

m , so the problem is not a local one near Xsing
m .

Example 2. Let C ⊂ X be an irreducible curve of geometric genus g with normali-
sation Ĉ on X, and take m ≥ g. Then Ĉm → Alb(C) is a surjective morphism with
generic fibres Pm−g, and there is then a natural generically injective map from Ĉm
to Xm showing that dXm vanishes identically on its image.

If the answer to Question 2 is affirmative (as it should be if and only if X is
of general type, after S. Lang’s conjectures), the vanishing locus of dXm appears
to have an involved structure. In particular, it should contain the union of all the
Ĉ)m whenever g(Ĉ) ≤ m, and this union should not be Zariski dense.

Example 3. The simplest possible example might be a surface S := C × C ′, where
C,C ′ are smooth projective curves of genus 2, and m = 2. In this case, the natural
map S2 → C2 × C ′2 is a ramified cover of degree 2 branched over R := (2C) ×
C ′2 ∪ C2 × (2C ′), where (2C) ⊂ C2 is the divisor of double points (and similarly
for (2C ′)). Notice that C2 identifies naturally with the Pic2(C), the Picard variety
of line bundles of degree 2 on C, isomorphic to Jac(C), blown-up over the point
{KC}, and 2C embeds C in C2, its image meeting the exceptional divisor of C2

in the 6 ramification points of the map C → P1 given by the linear system |KC |.
Thus 2C ⊂ C2 is an ample divisor (similarly for C ′).

As a first step towards Question 2, let us show the following result which in
particular implies that entire curves in the above example cannot be Zariski dense.

Proposition 6.1. Let X be a complex projective variety of dimension n with ir-
regularity q := h0(X,ΩX).

(1) If m · n < q then entire curves in Xm are not Zariski dense.
(2) If X is of general type, n ≥ 2 and m · n ≤ q then entire curves in Xm are

not Zariski dense.

Proof. Let α : X → A be the Albanese map. It induces the Albanese map αm :
Xm → A. If dimXm = m · n < q = dimA then by the classical Bloch-Ochiai’s
Theorem, entire curves in Xm are not Zariski dense. If X is of general type, by
[AA03], Xm is of general type. Therefore by [Yam04, Corollary 3.1.14], if dimXm =
m · n ≤ q = dimA, entire curves in Xm are not Zariski dense. �

7. Jet differentials over symmetric powers

In this section, we will present our main criterion for hyperbolicity of symmetric
powers Xm, in terms of the existence of jet differentials on X (see Theorem 16).

7.1. Jet differentials on resolutions of quotient singularities. We recall here
some basic definitions related, on the one hand, to natural orbifold structures on
resolution of quotients singularities (see [CRT19, Cad18, CDG19]), and on the other
hand, to orbifold jet differentials (see [CDR18]). The basic result we will need is
given by Proposition 7.1.
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7.1.1. Jet differentials on orbifolds. Let us give some details about the very basic
notion of orbifold jet differentials that we will use in the following. For our purposes,
it will be enough to consider only orbifolds of the form (X,∆ =

∑
i(1 −

1
mi

)Di),
with mi ∈ N≥1. Also, rather than using the geometric orbifold jet differentials
defined in [CDR18], it will also suffice to consider jet differentials adapted to di-
visible holomorphic curves in the sense of [loc. cit., Definition 1.1]. The latter jet
differentials admit a very simple description. For any k, r ∈ N, we will denote by
EGGk,r Ωdiv

(X,∆) the vector bundle of divisible orbifold jet differentials of order k and
degree r, whose sections in orbifold local charts adapted to ∆ can be described as
follows. Assume that (t1, ..., tp, tp+1, ..., tn) ∈ U 7−→ (tm1

1 , ..., t
mp
p , tp+1, ..., tn) ∈ V

is such a chart. Then, the local sections of EGGk,r Ωdiv
(X,∆) corresponds to the regu-

lar sections of EGGk,r ΩU on U , which are invariant under the deck transform group.
Remark that we could also have defined EGGk,r Ωdiv

(X,∆) in terms of a global adapted
covering instead of local orbifold charts.

7.1.2. Natural orbifold structure on resolutions of a quotient singularity. Consider
now a quotient Y = G

∖
X where X is smooth, and G finite. If Ỹ −→ Y is a

resolution of singularities, we can endow it with a natural orbifold structure, by
assigning to every exceptional divisor E ⊂ Ỹ the rational multiplicity 1− 1

m , where
m is the order of the element γ ∈ G associated with the meridional loop around
the generic point of E (see [CDG19, Cad18]).

With this notation, the following proposition is then essentially tautological.

Proposition 7.1. Let X be a complex manifold, and let G ⊂ Aut(X) be a finite
subgroup. Let p : X −→ Y = G

∖
X be the quotient map, and Ỹ

π−→ Y be a
resolution of singularities. Let (Ỹ ,∆) be the natural orbifold structure on Ỹ . Let
A be a G-invariant divisor on X, and B the associated Cartier divisor on Y such
that p∗B = A.

For k, r ∈ N, we let σ ∈ H0(X,EGGk,r ΩX ⊗ O(−A)) be a G-invariant section.
Then π∗p∗σ induces an element of H0(Ỹ , EGGk,r Ωdiv

(Ỹ ,∆)
⊗O(−π∗B)).

Remark 7.2. With the notation of the previous proposition, we see that if r is
divisible enough, and if f is a local section of OỸ (−r∆) ⊂ OỸ , then f · π

∗p∗σ is a
holomorphic section of EGGk,r ΩỸ ⊗O(−π∗B).

7.2. A first criterion for the hyperbolicity of symmetric powers. Before
presenting our next hyperbolicity result, let us first prove a proposition that will
allow us later on to compensate for the divergence of natural orbifold objects on
resolutions of Xm. We resume the notation introduced in Section 2.1.

Proposition 7.3. Let X be a complex projective manifold, and let A be a very
ample divisor on X. Let π : X̃m −→ Xm be a log-resolution of singularities, and
let ∆ be the exceptional divisor with its reduced structure. Then

B(π∗A[ −
1

2(m− 1)
∆) ⊂ |∆|,

where B denotes the stable base locus.

We break the proof of this proposition into several lemmas.
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Lemma 7.4. Let U be a complex manifold, let G ⊂ Aut(U) be a finite group,
and let p : U −→ G

∖
U = V be the quotient map. Let A be a divisor on X, and

let A] =
∑
γ∈G

γ∗A. Note that A] is G-invariant, so there exists a Cartier effective

divisor A[ on V such that p∗A[ = A]. Let W ⊂ U be an irreducible component
of the subset of points stabilized by some element of G. Let s ∈ Γ(U,A]) be a G-
invariant section vanishing at order r along W , for some r ≥ 1. Then, we have the
following.

(1) s descends to a section σ ∈ Γ(V,A[) ;
(2) let X̃ π−→ X be a resolution of singularities, and let E ⊂ X̃ be an excep-

tional divisor such that π(E) ⊂ p(W ). Let m be the multiplicity of E for
the natural orbifold structure on X̃. Then, π∗σ, seen as a section of π∗A[,
vanishes at order ≥ r

m along E.

Proof. (1) is trivial, by definition of A[. Let us prove (2). Let H ⊂ G be the
stabilizer of the generic point of π(E). By definition of A], we may find an H-
invariant trivialization e of A] near this generic point. Besides, s = f e for some H-
invariant holomorphic function f vanishing at order r alongW . Consider a polydisk
D ∼= ∆n centered around a generic point of E, and let D′ be the normalization of
the fibered product of D and U over V . We obtain the following diagram:

D′ ∼= ∆×∆n−1 U

(∆n ∩ E) = {0} ×∆n−1 D ∼= ∆×∆n−1 V

π′

p′ p

π

Since f is H-invariant, f ◦ π′ = f ′ ◦ p′ for some holomorphic function f ′ on D ∼=
∆×∆n−1. Moreover, we have σ = f ′ e[, where e[ is the section of A[ induced by e.
The holomorphic function f vanishes at order r > 0 along V , so f ◦ π′ vanishes at
order ≥ r along {0}×∆n−1. Since p′(w, z) = (wm, z), this implies that f ′ vanishes
at order ≥ r

m > 0 along {0} ×∆n−1 ⊂ ∆n. This ends the proof. �

Lemma 7.5. Let N,m ≥ 1. We define V = PN × ... × PN to be a product of m
copies of PN . Let D = {(z1, ..., zm) ∈ V | ∃i 6= j, xi = xj} ⊂ V be the diagonal

locus. Let A ⊂ PN be a hyperplane section, and let A] =
m∑
i=1

pr∗i A.

Then, for any z ∈ V \D, there exists a Sm-invariant section

s ∈ Γ(V,OV (2(m− 1)A])),

with s(x) 6= 0, and such that s vanishes at order 2 along D.

Proof. Let z = (z1, ..., zm) ∈ V \D. Write (PN )i to denote the i-th factor of V . For
any i < j, we have zi 6= zj , so for two generic hyperplane linear sections X,Y ∈ |A|,
we have

(1) X(zi)Y (zj)−X(zj)Y (zi) 6= 0.

Indeed, we can choose X, Y so that X(zi) 6= 0 and X(zj) = 0 (resp. Y (zi) = 0 and
Y (zj) 6= 0).
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Now, choose two generic linear sections X,Y in |A|, and for each 1 ≤ i ≤ m, let
Xi and Yi be the corresponding section on the copy (PN )i. We let

s =
∏
i<j

(XiYj −XjYi)
2

This is a section of
⊗m

i=1 p
∗
iO(2(m−1)) = O(2(m−1)A]). By the argument above,

we can pick s so that s(z) 6= 0, and s vanishes on D at order 2 by Lemma 7.6. We
check that s is invariant under all transpositions (i j) ∈ Sm. This proves that s is
Sm-invariant. �

Lemma 7.6. Let X1, Y1 be two generic hyperplane sections on PN , and let X2, Y2

denote the same sections on a second copy of PN . Then the homogeneous polynomial
X1Y2 −X2Y1 vanishes at order 1 along the diagonal of PN × PN .

Proof. We let 2u = X1 +X2, 2v = X1 −X2 (resp. 2u′ = Y1 + Y2, 2v′ = Y1 − Y2).
Then, we can write

X1Y2 −X2Y1 = (u+ v)(u′ − v′)− (u− v)(u′ + v′)

= −2uv′ + 2u′v.

This expression is of degree 1 in v′ and v, so for generic u, u′, it vanishes at order
one along the diagonal. �

The proof of Proposition 7.3 is now straightforward.

Proof of Proposition 7.3. Let x ∈ X̃m \ |∆|, and let x0 ∈ Xm be such that p(x0) =
π(x). Since x is not in |∆|, x0 is not in the diagonal locus of Xm. Using the
embedding X ⊂ PN provided by the very ample divisor A, Lemma 7.5 gives a
Sm-invariant section s ∈ H0(Xm, 2(m− 1)A]) such that s(x0) 6= 0, and such that
s vanishes at order 2 along the diagonal locus.

We may now see s as a a section σ of 2(m− 1)A[. Applying Lemma 7.4 to s, we
see that the induced section

π∗σ ∈ H0(X̃m, 2(m− 1)π∗A[)

vanishes along |∆|. Moreover, we have π∗σ(x) 6= 0, which gives the result. �

We are ready to state our hyperbolicity criterion (announced in Theorem 4), in
terms of the existence of sufficiently many jet differentials of bounded order on X.
Again, we refer to [Dem12] for the basic definitions related to jet differentials. Let
us simply recall that the locus of singular jets XGG,sing

k ⊂ XGG
k is the subset of all

classes of k-jets [f : ∆→ X]k such that f ′(0) = 0. Also, if V ⊂ H0(X,EGGk,r ΩX) is
a vector subspace, then Bs(V ) ⊂ XGG

k is the subsets of classes of the k-jets which
are solutions to every equation in V .

Theorem 16. Let X be a complex projective manifold. Let A be a very ample line
bundle on X. Let Z ⊂ X, and k, r, d ∈ N∗. We make the following hypotheses.

(1) Assume that

Bs
(
H0(X,EGGk,r ΩX ⊗O(−dA))

)
⊂ XGG,sing

k ∪ π−1
k (Z).

(2) Assume that d
r > 2m(m− 1).

Then, Exc(X̃m) ⊂ |∆| ∪ π−1(d1(Z)).
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Proof. Let f : C −→ X̃m be an entire curve such that f(C) 6⊂ |∆|. Let U =
C− f−1(|∆|), and, as before D =

⋃
i 6=j
{xi = xj} ⊂ Xm . We consider the following

diagram:

Ũ Xm \D X

U (Xm)reg

g

q p

pri

f

where q is the universal covering map, and g is an arbitrary lift of f . Without loss
of generality, we can assume that all pri◦g are non-constant (1 ≤ i ≤ m). Indeed, if
one of these maps is constant, it suffices to replace Xm (resp. Xm) by the product
Y = X × ...×X over a number m′ < m of factors (resp. by Xm′ = Sm′

∖
Y ).

We may assume that Im(pri ◦ g) 6⊂ Z for all 1 ≤ i ≤ m, otherwise the proof is
finished. Thus, there exists t ∈ Ũ such that (pri ◦g)(t) 6∈ Z, and (pri ◦g)′(t) 6= 0 for
all 1 ≤ i ≤ m. By the hypothesis (1), there exists σ ∈ H0(X,EGGk,mΩX ⊗O(−dA))

such that for all 1 ≤ i ≤ m, we have σg(t) · (pri ◦ g) 6= 0, and in particular

σ(pri ◦ g) 6≡ 0

for all i.

Thus, σ] def
=
⊗m

i=1 pr∗i (σ) is aSm-invariant jet differential inH0(Xm, EGGk,rmΩX⊗
O(−dA])) such that σ](g) 6≡ 0. By Proposition 7.1, σ] induces a section

σ[ ∈ H0(X̃m, E
GG
k,rmΩdiv

(X̃m,∆)
⊗O(−dπ∗A[)).

We have moreover σ[(f) 6≡ 0.

Now, by Proposition 7.3, for a ≥ 1 divisible enough, there exists s ∈ H0(X̃m, a(π∗A[−
1

2(m−1)∆)) such that s|f(C) 6≡ 0. Thus, by the remark following Proposition 7.1,
s2rm(m−1)σa[ induces a non-orbifold section

σ′ ∈ H0
(
X̃m, E

GG
k,armΩX̃m ⊗O (a(2rm(m− 1)− d)π∗A[)

)
,

and σ′(f) 6≡ 0.
Since A] is ample, and p is finite, the divisor A[ is ample, so π∗A[ is big on X̃m.

But now, since 2rm(m − 1) < d, the existence of σ′ is absurd by the fundamental
vanishing theorem of Demailly-Siu-Yeung (see [Dem12]). �

7.3. Applications.

7.3.1. Hypersurfaces of large degree. Using Theorem 16, we can now obtain hyper-
bolicity results for the varieties Xm when X ⊂ Pn+1 is a generic hypersurface of
large degree. To do this, we will make use of several important recent results con-
cerning the base loci of jet differentials on such hypersurfaces. Let us begin with
the algebraic degeneracy of entire curves.

The recent work of Bérczi and Kirwan [BK19] gives new effective degrees for
which a generic hypersurface has enough jet differentials to ensure the degeneracy
of entire curves. This improvement of [DMR10] yields the following result.
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Theorem 17 ([BK19]). Let X ⊂ Pn+1 be a generic hypersurface of degree

d ≥ 16n5(5n+ 4).

Then, if r � 0 is divisible enough, we have

(2) Bs

[
H0(X,EGGn,r ΩX ⊗O(−r d− n− 2

16n5
+ r(5n+ 3)))

]
⊂ XGG,sing

k ∪ π−1
k (Z)

for some algebraic subset Z ( X.

Remark 7.7. As explained in [BK19], the coefficient 5n+3 comes from Darondeau’s
improvements [Dar16] for the pole order of slanted vector fields on the universal
hypersurface. It seems to us by reading [Dar16] that we should actually expect the
slightly better value 5n− 2.

We deduce immediately from Theorem 16 the following consequence of this re-
sult.

Corollary 7.8. Let m,n ∈ N∗. Let X ⊂ Pn+1 be a generic hypersurface of degree

d ≥ 16n5(5n+ 2m2 + 4).

Then there exists Z ( X such that Exc(Xm) ⊂ d1(Z).

Proof. Because of (2), the conditions of Theorem 16 will be satisfied if(
d− n− 2

16n5
− (5n+ 3)

)
> 2m(m− 1),

which is implied by our hypothesis. We have then Exc(Xm) ⊂ (Xm)sing ∪ d1(Z)
for some Z ( X. Since (Xm)sing is a union of Xm′ for m′ < m, an induction on m
permits to conclude. �

It is also possible to obtain the hyperbolicity of Xm when X has large enough
degree, using all the recent work around the Kobayashi conjecture (cf. [Bro17,
Den17, Dem18, RY18]). The main result of [RY18] permits to reduce the proof of
the hyperbolicity of X to results such as Theorem 17, and gives in particular the
following.

Theorem 18 ([RY18]). Let d, n, c, p ∈ N. Suppose that for a generic hypersurface
X ′ ⊂ Pn+1+p of degree d, we have

Bs
(
H0(X ′, EGGk,r ΩX′ ⊗O(−1))

)
⊂ X ′kGG,sing ∪ π−1

k (Z ′),

for some algebraic subset Z ′ ⊂ X ′ satisfying codim(Z ′) ≥ c. Then, for a generic
hypersurface X ⊂ Pn+1 of degree d, we have

Bs
(
H0(X,EGGk,r ΩX ⊗O(−1))

)
⊂ XGG,sing

k ∪ π−1
k (Z),

for some subset Z ⊂ X with codim(Z) ≥ c+ p.

Letting d = n−1, we can give a proof of Theorem 5 as a corollary of Theorem 18
and Theorem 16, combined with Theorem 17:

Corollary 7.9. Let X ⊂ Pn+1 be a generic hypersurface of degree

d ≥ (2n− 1)5(2m2 + 10n− 1).

Then Xm is hyperbolic.
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7.3.2. Complete intersections of large degree. We can also obtain a hyperbolicity
result for symmetric products of generic complete intersections of large multidegree,
using the work of Brotbek-Darondeau and Xie on Debarre’s conjecture (see [BD18,
Xie18]). The effective bound in the theorem below is provided by [Xie18].

Theorem 19 ([BD18, Xie18]). Let n, n′, d ≥ 1, and assume that n′ ≥ n. Let
X ⊂ Pn+n′ be a complete intersection of multidegrees

d1, ..., dn′ ≥ (n+ n′)(n+n′)2

· d
Then ΩX ⊗O(−d) is ample. In particular

Bs(H0(X,EGG1,r ⊗O(−rd)) = ∅
for r � 1.

By Theorem 16 and the same induction argument on m as above, the following
corollary is immediate.

Corollary 7.10. Let m,n ∈ N∗ and let n′ ≥ n. Let X ⊂ Pn+n′ be a generic
complete intersection of multidegrees

d1, ..., dn1
> (n+ n′)(n+n′)2

(2m(m− 1))

Then Xm is hyperbolic.

Remark 7.11. For d1 large enough, Corollary 7.10 is trivially implied by Corollary
7.9. Indeed, if X ⊂ H, where H is a degree d1 hypersurface, Xm embeds in Hm.

8. Higher dimensional subvarieties

In this section, we gather several results related to the subvarieties of Xm, when
X is a "sufficiently hyperbolic" manifold. In particular, when ΩX is ample, we will
show that a generic subvariety of Xm of codimension higher than n−1 is of general
type (see Theorem 20).

Lemma 8.1. Assume that X is a complex manifold of dimension n, with n ≥ 2,
and let Sm act on Xm. Let α ∈ [0, 1]. If

d ≥ n(m− 1) + 2− α
(n− 2)(m− 2)

2
,

then the condition (I ′x,d,α) of Section 2.2 is satisfied for every x ∈ Xm. In particu-
lar, if d ≥ n(m− 1) + 2, then the condition (Ix,d) is satisfied for any x ∈ Xm.

Proof. Let σ ∈ Sm\{1}, and let σ = σ1...σt be a decomposition of σ into cycles with
disjoint supports. For each σi, let ri = ord(σi), and assume that r1 ≥ ... ≥ rl > 1,
and rl+1 = ... = rl+s = 1, with s = t− l. Then, the order of σ is r = lcm(r1, ..., rl),
and the ai appearing in condition (Ix,d) are the integers j rrk (1 ≤ k ≤ s, 0 ≤ j < rk),
each one repeated n times. We see in particular that 0 appears with multiplicity
nt = n(s+ l), and that each non-zero ai is larger than r

max
1≤j≤l

rj
.

We need to check that for any choice of d distinct elements ai1 , ..., aid among the
ai, the sum is larger than (1 − α)r. The lowest possible sum is reached when all
the 0 appear in it. Thus, the sum of the aij is larger than

(d− n(s+ l))
r

max
1≤j≤l

rj
.
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The last quantity is larger than r(1− α) if the following inequality is satisfied:

(3) n(s+ l) + (1− α) max
1≤j≤l

rj ≤ d

Now, we have max
1≤j≤l

rj ≤
∑

1≤j≤l
rj = m−s, and 2l+s ≤

∑
1≤j≤l rj +s = m hence

l ≤ m−s
2 . Putting everything together, we see that the following is always satisfied:

n(s+ l) + max
1≤j≤l

rj ≤
(n

2
+ 1
)
m+ (1− α)

(n
2
− 1
)
s.

Since n ≥ 2 and 1−α ≥ 0, the right hand side is maximal if s is maximal, equal to

m−2; this right hand side is then equal to n(m−1)+2−α
(n− 2)(m− 2)

2
(thus the

maximum is reached for r1 = 2, r2 = ... = rt = 1, i.e. when σ is a transposition).

Thus, if d ≥ n(m− 1) + 2− α
(n− 2)(m− 2)

2
, the inequality (3) is satisfied, which

gives the result. �

In the next definition, we state a condition that will later imply that a generic
subvariety of Xm of high enough dimension is of general type (see Theorem 20).

Definition 8.2. Let X be a complex projective manifold, let Σ ( X be a proper
algebraic subset, and let A be an effective divisor on X. We say that X satisfies
the property (HΣ,A), if the following holds.

Let V ⊂ X be a subvariety of arbitrary dimension d, not included in Σ and A.
Then, there exists q, r ≥ 1, and a section σ ∈ H0(X, (

∧d
ΩX)⊗q), with non-zero

restriction

σ|(∧d TV reg )⊗q ∈ H
0(V reg, (

d∧
ΩV )⊗q ⊗O(−rA|V ))− {0}.

Under suitable positivity hypotheses on the cotangent bundle of a complex man-
ifold, it is not hard to check that the previous condition is satisfied, as we will show
in the next proposition.

Recall that if E −→ X is a vector bundle, its augmented base locus is the algebraic
subset B+(E) ⊂ X defined as follows. Let p : P(E) −→ X be projectivized bundle
of rank one quotients of E, and O(1) be the tautological line bundle on P(E). Then,
if A is any ample line bundle on X, we let

B+(E) = p(B+(O(1))),

where B+(O(1)) =
⋂
l≥1

Bs(O(l) ⊗ p∗A−1). The ample locus of E is the (possibly

empty) open subset X \ B+(E).

Proposition 8.3. Let X be a complex projective manifold such that ΩX is big. Let
A be any very ample divisor on X.

(1) if B+(ΩX) 6= X, then X satisfies the property (HB+(ΩX),A);
(2) if ΩX is ample, then X satisfies the property (H∅,A).

Proof. (1) Let V ⊂ X be a d-dimensional subvariety such that V 6⊂ B+(ΩX) and
V 6⊂ A. By general properties of ampleness of vector bundles, we have the inclusion
B+(

∧d
ΩX) ⊂ B+(ΩX) (this can be seen easily e.g. from [Laz04, Corollary 6.1.16])

Thus, if x ∈ V \ B+(
∧d

ΩX) is a smooth point of V , and w =
∧d

TV,x, there
exists σ ∈ H0(X,Sm(

∧d
ΩX) ⊗ O(−A)) such that σx(w⊗m) 6= 0. In particular,
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since σ vanishes along A, the restriction σ|V vanishes along A ∩ V . The section σ
satisfies our requirements.

(2) If ΩX is ample, we have B+(ΩX) = ∅, so the result comes from the first
point. �

In the next proposition, we show that the property (HΣ,A) is stable under prod-
ucts.

Proposition 8.4. Let Xi (i = 1, 2) be complex projective manifolds, and denote
by p1, p2 : X1 ×X2 −→ X the canonical projections. Assume that each Xi satisfies
the property (HΣi,Ai) for some subvariety Σi ( Xi and some divisor Ai on X.

Then X1 ×X2 satisfies the property (HΣ,A), where Σ = p−1
1 (Σ1)∪ p−1

2 (Σ2), and
A = p∗1A1 + p∗2A2.

Proof. Let V ⊂ X1 × X2 be a d-dimensional subvariety such that V 6⊂ Σ. Let
d2 = dim p2(V ), and let d1 be the dimension of the generic fiber of p2 : V −→ p2(V ).
We have d1 + d2 = d.

(1) We deal first with the case d2 = 0. Then, we have dim p1(V ) = d, and
p1(V ) 6⊂ Σ1 because V 6⊂ Σ. Since X1 satisfies (HΣ1), there exists integers
q, r ≥ 1, and a section σ ∈ H0(X1, (

∧d
ΩX1)⊗q) such that σ|∧d Tp1(V )reg

vanishes

at order r along A1. Thus, (p1)∗σ ∈ H0(X1 × X2, (
∧d

ΩX1
)⊗q). We also have

(p1)∗σ|∧d TV reg
6≡ 0, and this section vanishes at order r along p∗1A1 + p∗2A2|V =

p∗1A1|V . This ends the proof in this case.

(2) Assume now that d2 > 0. Let x2 ∈ X2 be generic so that dim(Vx2) = d1 and
p1(Vx2) 6⊂ Σ1, where Vx2 = p−1

2 (x2) ∩ V . Let V2 = p2(V ), and V1 = p1(Vx2).
For each i, we have Vi 6⊂ Σi, so there exists integers qi, ri ≥ 1, and a section

σi ∈ H0(Xi, (
∧di ΩXi)

⊗di) whose restriction to (
∧di TV reg

i
)⊗qi vanishes at order ri

along Ai|Vi . Then,
σ = (p∗1σ1)⊗q2 ⊗ (p∗2σ2)⊗q1

can be identified to a section in H0(X1×X2, (
∧d1 p∗1ΩX1

⊗
∧d2 p∗2ΩX2

)⊗q1q2). Since∧d1 p∗1ΩX1
⊗
∧d2 p∗2ΩX2

is a direct factor of
∧d

ΩX ∼=
∧d1+d2(p∗1ΩX1

⊕ p∗2ΩX2
), we

have obtained a section σ ∈ H0(X1×X2, (
∧d

ΩX1×X2
)⊗q1q2) which does not vanish

along V .
Moreover, by construction, the restriction of σ to (

∧d
TV reg)⊗q1q2 vanishes along

B|V , where B = q2r1 p
∗
1A1+q1r2 p

∗
2A2. Since q2r1, q1r2 > 0, this restriction vanishes

along A. This gives the result. �

In the case where X1 = X2, it is not hard to strengthen the property (HΣ) to
obtain sections σ invariant by permutation of X1 and X2. More precisely, we have
the following:

Proposition 8.5. Let X be a complex projective manifold satisfying the property
(HΣ,A) for some Σ ( X and some ample divisor A on X. Let Σ′ ⊂ Xm the subset
of points with at least a coordinate in Σ. Let Sm act on Xm by permutation of the
factors. Then, for any subvariety V ⊂ Xm of dimension d and such that V 6⊂ Σ′,
there exists an integer q ≥ 1, and a Sm-invariant section σ ∈ H0(Xm, (

∧d
ΩX)⊗q⊗

O(−A]))Sm such that σ|∧d TV reg
6≡ 0.
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Proof. Let us recall that A] =
m∑
i=1

pr∗iA. By Proposition 8.4, Xm satisfies the

property (HΣ′,A]) so there exists q0 ≥ 1 and a section σ0 ∈ H0(Xm, (
∧d

ΩX)⊗q0),
such that σ0|(∧d TV reg )⊗q0 vanishes at order r0 along A]|V .

Now, we let

σ =
⊗
s∈Sm

s · σ0 ∈ H0(Xm, (

d∧
ΩX)⊗m! q0)

The section σ is Sm-invariant and vanishes along A], hence satisfies our require-
ments. �

We now show the main hyperbolicity result of this section which implies Theorem
6 as an immediate corollary.

Theorem 20. Let X be a complex projective manifold with dimX ≥ 2. Assume
X satisfies (HΣ,A) for some Σ ( X and some ample divisor A on X.

Then, any subvariety V ⊆ Xm such that codimV ≤ n−2 and V 6⊂ Xsing
m ∪d1(Σ)

is of general type.

Proof. Let V ⊂ Xm be a d-dimensional variety satisfying the hypotheses above.
We have then d ≥ (m − 1)n + 2. Let Xm p−→ Xm be the canonical projection.
We do not lose generality in replacing A by a high multiple (the condition (HΣ,A)
is preserved), and then moving it in its linear equivalence class, so we can assume
that V 6⊂ |A|.

By Proposition 8.5, for q � 0, there exists a section σ ∈ Γ(Xm, (
∧p

ΩXm)⊗q)Sm ,
whose restriction to (

∧d
Tp−1(V reg))

⊗q vanishes along the Sm-invariant ample divi-
sor A]. This section descends to Xm; moreover, for any resolution of singularities
X̃m, Lemma 8.1 shows that the Reid-Tai-Weissauer criterion of Proposition 2.1 is
applicable. Hence, σ induces a section

σ̃ ∈ H0(X̃m, (

d∧
ΩX̃m)⊗q).

Moreover, the restriction of σ̃ to
∧d

TV reg vanishes on the ample Cartier divisor A[
defined so that p∗A[ = A]|V .

Consider now a resolution of singularities Ṽ ϕ−→ V . The pullback ϕ∗σ induces a
section of KṼ that vanishes on the big divisor ϕ∗A[. This implies that KṼ is big,
so V is of general type. �

Remark 8.6. The bound on dimV in Theorem 20 is sharp, as we can see from the
following example. Let C be a genus 2 curve, and let Y be any (n− 1)-dimensional
variety with ΩY ample. Let X = C × Y . This manifold satisfies property (H∅,A)
for some ample divisor A by Propositions 8.3 and 8.4.

(1) In the casem = 2: let f : S2C×Y −→ S2(C×Y ) = S2X be the generically
injective map

f( [c1, c2], y1, ..., yn−1) = [(c1, y1, ..., yn−1), (c2, y1, ..., yn−1)].

Since g(C) = 2, the variety S2(C) is birational to Jac(C) and thus
S2C × Y is not of general type.
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(2) In the case m ≥ 2, consider the composition of f × IdXm−2 : S2C × Y ×
Xm−2 −→ S2X × Xm−2 (where f is as above) and of the natural map
g : S2X ×Xm−2 −→ SmX.

We have dimS2C × Y × Xm−2 = n(m − 1) + 1, and the image V =
(g◦f)(S2C×Y ×Xm−2) inXm is not of general type, since S2C×Y ×Xm−2

is not.

Note that if the Green-Griffiths-Lang conjecture were true, then Theorem 20
would imply the following result.

Conjecture 8.7. Let X be a complex projective manifold with ΩX ample. Then,
codim Exc(Xm) ≥ n− 1.

We can use Theorem 20 to prove the following weaker statement, that gives
geometric restrictions on the exceptional locus on non-hyperbolic algebraic curves
in Xm. It gives also a more precise version of Corollary 1.6:

Corollary 8.8. Assume that ΩX is ample. Then, there exist countably many proper
algebraic subsets Vk ( Xm (k ∈ N) containing the image of any non-hyperbolic
algebraic curve. Moreover, the Vk can be chosen so that for any component W of
Di(Xm) (0 ≤ i ≤ n) containing Vk (k ∈ N), we have codimW (V ) ≥ n− 1.

In particular (letting i = 0 and W = Xm), we have codimXm(Vk) ≥ n− 1 for all
k ∈ N.

Proof. As the irreducible components of each Di(Xm) identify to copies of Xm−i,
it suffices to prove the last claim, and to show the result for curves C not included
in (Xm)sing.

By [Kol95, Proposition 2.8], a Hilbert scheme argument shows that there exists:
(1) a locally topologically trivial family of normal varieties p : V → B, where

B is a smooth scheme with countably many components;
(2) a morphism f : V → Xm,

such for any subvariety V ⊂ Xm, there exists t ∈ B with f(Vt) = V . Let Bnon hyp ⊂
B be the subset parametrizing curves of genus g ≤ 1. Then, for any irreducible
component V of p−1(Bnon hyp), the subvariety f(V ) ⊂ X admits a dominant family
of non-hyperbolic curves, and hence is not of general type. Since ΩX is ample,
Theorem 20 implies that codim f(V ) ≥ n− 1 if f(V ) 6⊂ (Xm)sing. The property of
p : V → B finally implies that any non-hyperbolic curve C ⊂ Xm with C 6⊂ (Xm)sing

is included in one such f(V ). This ends the proof. �

We can also prove Corollary 1.7, as the following statement, similar to [AA03,
Corollary 4].

Corollary 8.9. Assume that ΩX is ample, and let Y ⊂ X be a closed submanifold.
Let 1 ≤ l ≤ d be integers. Assume that for a generic point p ∈ Yl × Xd−l, there
exists a curve of geometric genus g in X such that all d coordinate points of p lie
in C. Then if

l · codimY ≤ dimX − 2,

we have g > d.

Proof. Assume that g ≤ d. By hypothesis, there exist C → V a family of curves and
a morphism f : C −→ X, such that the image Z of Yl ×Xd−l → Xd is dominated
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by the image of Sdf : SdC → Xd. As in [AA03], we may replace V be a hyperplane
section to assume that Sdf is generically finite.

Since g ≤ d, the family SdC → V is a family of varieties which are not of general
type (the fiber over t is a Pd−g-bundle over Jac(Ct)), and hence Z is not of general
type as well. Since dimZ = dimYl ×Xd−l, Theorem 20 implies dim(Yl ×Xd−l) <
(d− 1) dimX + 2, hence

dimY <
1

l
((l − 1) dimX + 2) ,

which gives the result. �

9. Metric methods

We will now present a metric point of view on these symmetric products of
varieties, which will permit to give several applications to quotients of bounded
symmetric domains.

We will use a metric hyperbolicity criterion similar to the one of [Cad18]. To
express this criterion, we need first to introduce several constants bounding the
Ricci curvature on subvarieties of the domain. Let us recall how to define these
constants.

Let Ω be a bounded symmetric domain of dimension n, and let hΩ be the
Bergman metric on this domain. If X,Y ∈ TΩ,x (x ∈ Ω), we can define the bi-
sectional curvature of hΩ as

B(X,Y ) =
iΘ(hΩ)(X,X, Y, Y )

||X||2hΩ
||Y ||2hΩ

.

Fix p ∈ N. Then, we define

(4) Cp = − max
X∈TΩ,x

max
V 3X,dimV=p

p∑
i=1

B(X, ei),

where V ⊂ TΩ,x runs among the p-dimensional subspaces containingX, and (ei)1≤i≤p
is any unitary basis of V . Since Ω is homogeneous, this constant does not depend
on x ∈ Ω.

Then, if we normalize the Bergman metric so that Cn = 1, we have a sequence
of positive constants

0 < C1 ≤ C2 ≤ ... ≤ Cn = 1.

These constants can be used to state the following criterion for the p-hyperbolicity
of compactification of a quotient of Ω.

Proposition 9.1 (see [Cad18]). Let M be a smooth projective manifold, and D,
E =

∑
i(1− αi)Ei be Q-divisors on X such that the support |E| ∪ |D| has normal

crossings. Let U = M − (|D| ∪ |E|), and let h be a smooth Kähler metric on U ,
possibly degenerate. Let p ∈ J1,dimMK and let α > 1

Cp
be a rational number. We

make the following assumptions.
(i) h is non-degenerate outside an algebraic subset Z ⊂M , and is modeled after

hΩ on U − Z;
(ii) the metric induced by h on

∧d
TM has singularities near any point of |Ei| −

(|D| ∪ Z) with coefficients of order at most O(|z|2(αi−1));
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(iii) there exists a non-zero section s of K⊗lU such that ||s||2/l
(deth∗)l

extends as a
continuous function u on M , vanishing along E + D at an order strictly
larger than 1

Cp
. If z is a local equation for a component of weight β in D+E,

this means that u = O(|z|
β
Cp

(1+ε)
) for some ε > 0 (recall that β = 1 for the

components of D, and β = 1− αi for the Ei).
Then,

(a) For any subvariety V ⊂M with V 6⊂ Z(s) ∪ E ∪D ∪ Z and dimV ≥ p, dimV
is of general type.

(b) For any holomorphic map f : Cp → M with Jac(f) generically of maximal
rank, we have f(Cp) ⊂ Z(s) ∪ E ∪D ∪ Z.

Proof. The metric h satisfies all the assumptions permitting to apply the proof of
Theorem 2 and Theorem 8 of [Cad18]. Let us recall that the technique of this proof
consists in forming the metric h̃ = ||s||2β(deth∗)mh for an adequate β > 0. We then

check that h̃ induces a positively curved singular metric on the canonical bundle
of a desingularization of any subvariety V as in the hypotheses. In the case of a
map f : Cp → M , we apply the Ahlfors-Schwarz lemma (see [Dem12, 4.2]) to this
metric to obtain a contradiction if f(Cp) 6⊂ Z(s) ∪ E ∪D ∪ Z. �

Remark 9.2. Assume that X = Γ
∖

Ω is a quotient by an arithmetic lattice, and let
q : M → X

BB
be a log-resolution of the singularities of the Baily-Borel compactifi-

cation of X. Let U ⊂ X be the smooth locus, and Ei (resp. Dj) be the components
of the exceptional divisor whose projection intersects Xsing (resp. whose projection
lies in X

BB \ X). For each i, let xi be a generic point of the projection of Ei on
X
BB

. Let Hi ⊂ Γ be the isotropy group of xi, and let αi be such that the action of
Hi on Ω satisfies the condition (I ′x,d,αi) of Section 2.1. We associate the multiplicity
αi to Ei by putting E =

∑
i(1− αi)Ei. We also let D =

∑
iDi.

With this notation, as explained in [Cad18, Section 4], the hypotheses (i) and
(ii) of Proposition 9.1 are satisfied. The condition (iii) is implied by the following
more algebraic condition.

(iii’) For α ∈ Q∗+, let Lα = q∗K
X
BB ⊗O(−α(D + E)). Then Lα is effective for

some α > 1
Cp

.
Moreover, Z(s) in (a) and (b) can then be replaced by the stable base locus

B(Lα).

Remark 9.3. We can generalize the conclusion (b) of Proposition 9.1 to the following
situation. Assume that there exists a proper birational holomorphic map q : M →
M0, where M0 is a possibly singular complex variety. Then, under the assumption
of the theorem, we can state the following:

(b’) Let W = q(Z(s)∪E ∪D∪Z). Then for any holomorphic map f : Cp →M0

with Jac(f) generically of maximal rank, we have f(Cp) ⊂W ∪ (M0)sing.

To prove this statement, assume by contradiction that there exists a f : Cp →M0

that fails to satisfy the conclusion of (b’). Let C be a resolution of singularities
of the main component of the fiber product Cp ×(f,q) M . Then, there exists a
proper morphism g : C → Cp, birational outside a locally finite union of analytic
subvarieties of Cp, and there exists a natural map h : C → M , generically non-
degenerate, whose image intersects U \ (Z ∪Z(s)∪E). Construct h̃ is as the proof
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of Proposition 9.1. Then, the metric g∗h̃ on C is subject to the following version
of the Ahlfors-Schwarz lemma.

Lemma 9.4. Let g : C → Cp be a proper holomorphic map, realizing an isomor-
phism outside a countable union of analytic subvarieties of Cp. Then TC cannot
admit any singular metric h, with deth everywhere locally bounded, smooth on a
dense open Zariski subset U , and satisfying the following inequality on U :

(5) ddc log deth ≥ εωh (ε > 0).

Proof. Assume by contradiction that there exists such a metric. We may assume
that g is an isomorphism on some open subset V ⊂ C containing U . We may then
see h as a metric on V ⊂ Cp, satisfying (5) on U . As deth is everywhere locally
bounded on V , and since ddc log deth ≥ 0 on U ⊂ V , the function log deth is psh
on V . Besides, as Cp is normal, we have codim(Cp \V ) ≥ 2, so log deth extends to
the whole Cp as a psh function, satisfying (5) in the sense of currents. This case is
however ruled out by the standard Ahlfors-Schwarz lemma stated in [Dem12]. �

Our plan is to use the previous proposition in the case where X is a resolution of
singularities of a symmetric product of a quotient of a bounded symmetric domain.
To do so, we will need some estimates on the Cp when the domain is of the form
Ωm (m ∈ N). The case p = 1 is fairly easy to settle: in this case, −C1 is just
the maximum of the holomorphic sectional curvature, and we have the following
well-known result.

Proposition 9.5. Let Ω be a bounded symmetric domain, and denote by −γ the
maximum of the holomorphic sectional curvature on Ω. Then we have

C1(Ωm) =
1

m
C1(Ω) =

γ

m
.

This can be checked directly by writing the formula for the bisectional curvature
of Ωm, or by remarking that by the polydisk theorem (see [Mok89]), it suffices to
deal with the case where Ω = ∆n. In this case the holomorphic sectional curvature
is maximal in the direction of the long diagonals, and the formula can be easily
derived.

We can use now use this result to study the case of ramified coverings of smooth
compact quotients of bounded symmetric domains.

Proposition 9.6. Let Y = Γ
∖

Ω be a smooth compact quotient, let p : X −→ Y
be a Block-Gieseker covering, and let δ = s

r be a positive rational number such that
be such that p∗K⊗rY = A⊗s for some very ample line bundle A. Let W ⊂ X be the
locus where p is non-étale.

Then if m ∈ N is such that

γ δ > 2m(m− 1),

the variety Xm is Brody hyperbolic modulo d1(W ).

Proof. Let q : M → Xm be a log-resolution of singularities, let E ⊂ M be the
exceptional locus, and Z be the preimage of d1(W ). Let hY be the pullback of the
Bergman metric on Y . This metric is smooth on Y , and non degenerate on Y −W .
This metric induces in turn a natural metric on the smooth locus of Ym, and by
pullback, a smooth metric h on M − E.
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Let us check that the conditions of Proposition 9.1 are satisfied for p = 1. Since
hY is non-degenerate and modeled on hΩ on X−W , the metric h is non-degenerate
and modeled on hΩm on M − (E ∪ Z), so the condition (i) is satisfied.

It follows directly from the discussion of Section 2.2 that the condition (I ′x,1,1)
is satisfied for every x ∈ Xm. Hence, the condition (ii) holds for E =

∑
iEi.

Let x ∈M −E. By Proposition 7.3, for some N ∈ N, there exists a section σ of
q∗A⊗sN[ ⊗ (− Ns

2(m−1) |E|) that does not vanish at x. By hypothesis, the line bundles
(A[)

⊗s|Xreg
m

and K⊗r
Xreg
m

coincide. Thus, if N is divisible enough, σ can be seen as a
section of the line bundle (q∗KXm ⊗O(− δ

2(m−1)E))⊗rN . Finally, the holomorphic
sections of q∗K⊗rNXm

have bounded norm for the norm induced by h, which shows
that (iii) is satisfied if δ > 2(m−1)

C1(Ωm) = 2m(m−1)
γ . This is precisely our hypothesis.

Moreover, since x ∈ M − E is arbitrary, the locus cut out by the sections σ is
included in M −E. The conclusion follows as announced from Proposition 9.1. �

The following result of Hwang-To can be used to give a more explicit constant δ
in the proposition above.

Theorem 21 ([HT00b]). For any smooth compact quotient of a bounded domain
X, there exists a finite étale cover X ′ such that 2KX′ is very ample.

This gives immediately the following series of examples.

Example 4. Let Y0 = Γ
∖

Ω be a smooth compact quotient, and let Y1 −→ Y0 be
the étale cover provided by [HT00b]. Let m ∈ N∗, and let q be an integer such that
q > 4m(m−1)

γ .

Now let X p−→ Y1 be a Bloch-Gieseker covering such that p∗(K⊗2
Y1

) = A⊗q,
with A very ample. Then, we have δγ = qγ

2 > 2m(m − 1), so that Xm is Brody
hyperbolic modulo d1(Sing(p)).

Example 5. For 1 ≤ i ≤ n, let Xi be a smooth projective curve of genus g ≥ 2,
and fix some integer q. For all i, since 3KXi is very ample, we can perform a q-fold
Bloch-Gieseker covering pi : X ′i −→ Xi, so that p∗i (3KXi) = A⊗qi , with Ai very
ample on X ′i.

Letting X = X ′1 × ...×X ′n
p−→ X1 × ...×Xn = Y , we have then p∗K⊗3

Y = A⊗q,
where A =

⊗
1≤j≤n

p∗jKXj is very ample on X. The manifold Y is a smooth compact

quotient of ∆n, and γ = 1
n for this domain. Proposition 9.6 shows then Xm is

Brody hyperbolic modulo (Xm)sing as soon as

q ≥ 6m(m− 1)n.

9.1. Non-compact ball quotients. In the case where the domain is the ball, it
is possible to give explicit values for the constants Cp. The result can be stated as
follows when dim Ω ≥ 5.

Proposition 9.7. We let Ω = Bn for some n ≥ 5. Let m ∈ N, and fix p ∈ J1,mnK.
Let k ∈ N (resp. d ∈ J0, n − 1K) be the quotient (resp. the remainder) in the
euclidean division of p− 1 by n. Then the value of Cp(Ωm) is given by the table of
Figure 1.
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m− k = 1 m− k = 2 m− k = 3 m− k = 4 m− k ≥ 5

d = 0

d+2
n+1

2
(m−k)(n+1)

d = 1 23
16

1
n+1

11
12

1
n+1

21
32

1
n+1

d = 2 7
4

1
n+1

d = 3 31
16

1
n+1

2
m−k−1

1
n+1

d ≥ 4

Figure 1. Values of Cp for the domain (Bn)m

Note the similarity with the case where Ω is the Siegel upper half-space (see
[Cad18, Proposition 1.4]). We will prove Proposition 9.7 in Section 9.2. As an
application, we can derive a proof of Theorem 7 as a corollary of our metric criterion:

Corollary 9.8. Let X = Γ
∖Bn be a ball quotient by a torsion free lattice with only

unipotent parabolic elements, and let X = X ∪D be a smooth minimal compactifi-
cation as constructed in [Mok12]. Let m ≥ 1. Then :
(a) Let V ⊂ Xm be a subvariety with codimV ≤ n− 6 and V 6⊂ d1(D) ∪ (Xm)sing.

Then V is of general type.
(b) Let p ≥ n(m − 1) + 6, and f : Cp → Xm be a holomorphic map such that

f(Cp) 6⊂ d1(D) ∪ (Xm)sing. Then Jac(f) is identically degenerate.

Proof. Let q : X̃ → Xm be a resolution of singularities. We may assume that
F = q−1(d1(D) ∪ (Xm)sing) is a simple normal crossing divisor. Let D̃ denote
the sum of components of F that project in d1(D), and E the sum of all other
components.

Let p ≥ n(m−1)+6 be an integer. By Proposition 9.7, since p ≥ n(m−1)+6, the
constant Cp is given by the first column of Figure 1, and Cp = p−n(m−1)+1

n+1 > 2π
n+1 .

Let h be the metric induced on U = X̃ \ (E + D). Let us check that the
assumptions of Proposition 9.1 are satisfied, with Ω = (Bn)m. (i) is obvious, taking
Z = ∅. By Lemma 8.1, since p ≥ n(m − 1) + 2, the condition (Ix,p) is satisfied
above any singular point of Xm, so Remark 9.2 implies that the hypothesis (ii) is
satisfied with αi = 1 for any component Ei ⊂ E.

To prove (iii), we make use of [BT18], whose main result shows that the line
bundle KX +(1−α)D is ample for any α > n+1

2π . Let α ∈] 1
Cp
, n+1

2π [. Thus, for l ∈ N
large enough, and any x = (x1, ..., xm) ∈ Xm \ ∪i=1pr−1

i (D), we can find a section
σ of l (KX + (1− α)D), such that σ(xi) 6= 0 (1 ≤ i ≤ m). Let s] =

⊗
1≤j≤m pr∗jσ.

This is a Sm-invariant section of K⊗lXm , which descends to a section s of K⊗lU . Let
u = ||s||2/l

(deth∗)l
.

We need to check the conditions on the growth of u near E + D̃. First, u is
bounded near any point of E since ||s]||(deth∗Ω)l is continuous on the manifold Xm.
Besides, by [Mum77, Theorem 3.1 and Proposition 3.4 (b)], the determinant of the
Bergman metric on KX+D has logarithmic growth near D. Hence, since σ, seen as
a section of l(KX+D), vanishes at order lα along D, then the function ||s]||2deth∗Ω

=∏
i pr∗i ||s||hBn vanishes at any order < lα near pri

∗D. Now ||s]||2/l
(deth∗Ω)l

= u ◦ π,
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where π : X
m → Xm is the projection, so u vanishes at order α near any point of

D̃ \ E. As α > 1
Cp

, the section s satisfies the condition (iii).
Finally, since x was arbitrary outside

⋃
1≤i≤m pr∗iD, we conclude from Propo-

sition 9.1 that all p-dimensional varieties V ⊂ X̃, not included in E + D̃, are of
general type. This proves (a).

The proof of (b) follows from the conclusion (b′) in Remark 9.3, applied with
M = X̃, and M0 = Xm. �

9.2. Computation of the curvature constants for the domain (Bn)m. We
now prove Proposition 9.7. We will proceed as in [Cad18], and introduce a certain
combinatorial functional whose minimum will give us the value of Cp(Ωm).

Definition 9.9. Let

∆m = {(r1, ..., rm) ∈ (R+)m |
∑

1≤j≤m

rj = 1 and r1 ≥ r2 ≥ ... ≥ rm}.

Let r = (r1, ..., rm) ∈ ∆m and Γ ⊂ J1,mK × J1, nK. Denote by k the number of
elements of Γ in the first column. We assume that k ≤ m− 1. We define:

F(r,Γ) =


2 +

∑
(i,j)∈Γ, i≥2

ri if k = m− 1

2
∑

1≤i≤m
r2
i + 2

∑
(i,1)∈Γ

ri +
∑

(i,j)∈Γ, j≥2

ri if k ≤ m− 2.

From now on, we fix a given minimizer (r,Γ) for F , where r ∈ ∆m, and Γ runs
among cardinal p−1 subsets of J1,mK× J1, nK with less than m−1 elements on the
first column. Let k be the number of these elements. We will assume that (r,Γ) is
chosen among all the minimizers so that
(1) r = (r1, ..., rm) has the maximal number of zero components ;
(2) among all minimizing couples (r,Γ) satisfying (1), Γ is chosen so that k is

maximal.

We can make a simple remark on the geometry of Γ. Let

Π = Γ ∩ (J1,mK× J2, nK)

be the set of elements of Γ which are outside of the first column. For each i ∈ J1,mK,
denote by bi the number of elements of Π which are on the i-th line. Then, since
r1 ≥ ... ≥ rm, we see from the formula for F that we may suppose that the elements
of Π are the largest possible in the lexicographic order. This implies that for some
q ∈ J0,mK, d ∈ J0, n − 2K, we have bm−j = n − 1 (0 ≤ j ≤ q − 1), bm−q = d, and
bm−j = 0 (m ≤ j ≤ q + 1).

Lemma 9.10. Let l be the maximal integer such that rm−l+1 = ... = rm = 0. We
have l = k.

Proof. The proof is exactly the same as the one of [Cad18, Lemma 3.8], replacing
g by m, Γ0 by Γ, and "off-diagonal" by "off the first column". �

The previous proof relies on the following lemma, which will be used frequently
in the following.
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Lemma 9.11 (see [Cad18, Lemma 3.9]). Let a1 ≤ ... ≤ am be non-negative inte-
gers, and let t be the smallest integer such that

∑t
i=1(at − ai) ≥ 4 (let t = m+ 1 if

there is no such integer). Let r ∈ ∆m be a minimizer for the quadratic form

Q(r1, ..., rm) = 2

m∑
i=1

r2
i +

m∑
i=1

airi.

Then rt = ... = rm = 0.

We will now compute the several possible values for the minimum F(r,Γ). We
will proceed by distinguishing along the value of k. There is one simple first case.

Lemma 9.12. If k = m− 1, then

F(r,Γ) = 2 + b1.

Proof. In this case, we have

F(r,Γ) = 2 +
∑

1≤i≤m

biri.

Recall that the bi are non-decreasing. Since r must be an extremum of the function
F(·,Γ), we see that we may chose r = (1, 0, ..., 0), which gives the result. �

We will now assume that k ≤ m− 2, and distinguish several subcases.

Case 0. q < k.
In this situation, since rm−k+1 = ... = rm = 0, we simply have F(r,Γ) =

2
∑m−k
i=1 r2

i . The minimum is then reached for (r1, ..., rm) = ( 1
m−k , ...,

1
m−k , 0, ..., 0),

and the value of the minimum is

F(r,Γ) =
2

m− k
.

Assumption. In the remaining cases 1 and 2 below, we will assume that q ≥ k,
which means that rm−q 6= 0.

Case 1. d ≥ 1.
By our previous description of the shape of Π, this implies that two subcases are

a priori possible.

Case 1a. q ≥ k + 1, i.e. the line {m− k} × J2, n− 1K is included in Γ.

Case 1b. q = k i.e. the only elements of J1,m− kK× J2, n− 1K in Γ are the
d last elements of {m− k} × J2, n− 1K.

Lemma 9.13. The case 1a. cannot occur.

Proof. In the case 1a, since rm−k 6= 0, Lemma 9.11 shows that
∑
i≤m−k(bm−k −

bi) ≤ 3. Hence, all elements of J1,m − kK × J2, n − 1K are in Γ, except δ elements
on the first line, with 1 ≤ δ ≤ 3. (If δ = 0, we would have d = 0).

This shows that b1 = n− 1− δ, with 1 ≤ δ ≤ 3, and bj = n− 1 (2 ≤ j ≤ m− k).
In this setting, the minimizer r is of the form (x, y, ..., y, 0, ..., 0) where y is repeated
m− k − 1 times, and x+ (m− k − 1)y = 1. Let b = m− k − 1.

The minimum then equals

F(r,Γ) = 2x2 + 2by2 + (n− 1)− δx.
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We claim that b ≤ 2. Indeed, if b ≥ 3, since n − 1 ≥ 4, we can remove 4 − δ
elements on the first line of Γ, to get a new set Γ′. If r′ ∈ ∆m is a minimizer for the
functional F(·,Γ′), we have r′2 = ... = r′m = 0 by Lemma 9.11. Since b ≥ 3, there is
enough room on the first column of Γ′ to add back the 4− δ elements, which gives
a new set Γ′′ with strictly more elements on the first column than Γ. Now

F(r′,Γ′′) = F(r′,Γ′) ≤ F(r,Γ′) ≤ F(r,Γ).

(The first equality comes from the fact the r′2 = ... = r′m = 0, and the inequalities
are obvious since all ri are non-negative). This gives a contradiction with our choice
of (r,Γ).

The same computation as in [Cad18, Lemma 3.14] shows that the case b = 1 is
impossible.

Let us finally exclude the case b = 2. In this situation r = (x, y, y, 0, ..., 0)
minimizes F(r,Γ) = 2x2 + 4y2 + (n− 1)− δx, with the constraint x+ 2y = 1. We
check that the minimum is equal to

n− (2 + δ)2

12
.

Since b = 2, there are two elements of J1,mK× {1} which are not in Γ, and we can
move two elements of the first row Γ to get a new set Γ′ with m− 1 elements in the
first column. Letting r′ = (1, 0, ..., 0), we have

F(r′,Γ′) = 2 + (n− 1)− (δ + 2)

= n− 1− δ

< n− (2 + δ)2

12
= F(r,Γ),

since δ ∈ {1, 2, 3}. This is a contradiction. �

Lemma 9.14. In the case 1b, there are only 5 possibilities, which are given in the
table of Figure 2.

Proof. In this case, we have bm−q = d, and this is the only non-zero bj with j ≤
m − l. By Lemma 9.11 again, we have d(m − k − 1) ≤ 3 since rm−k 6= 0. Since
d 6= 0 and m− k ≥ 2 in the case under study, this gives only only five possibilities.
The corresponding values for the minimum of F(r,Γ) = 2

∑m−k
j=1 r2

j + drm−k were
computed in [Cad18, Case 2]. �

m− k = 2 m− k = 3 m− k = 4

d = 1 23
16

11
12

21
32

d = 2 7
4

d = 3 31
16

Figure 2. Possible values of the minimum of F in the case 1b

There is only one remaining case.

Case 2. d = 0.



39

Lemma 9.15. Case 2 cannot occur unless Γ is of the form Jm−k+ 1,mK× J1, nK.
The value of the minimum is then

F(r,Γ) =
2

m− k
.

Proof. If Γ is not of the prescribed form, we have

F(r,Γ) = 2
∑

1≤j≤m−k

r2
j + (n− 1)

m−k∑
j=m−q+1

rj ,

with q < k. Applying another time Lemma 9.11, since rm−k 6= 0, we have (n −
1)(m − q) ≤ 3 for all t ≥ 1. As we assumed that n ≥ 5, this implies that q = m,
i.e. Γ contains all the elements which are not on the first column. The minimum
is then reached for r of the form r = ( 1

m−k , ...,
1

m−k , 0, ..., 0) (1/(m − k) repeated
m− k times), and its value is

F(r,Γ) =
2

m− k
+ (n− 1).

However, this is absurd. Indeed, let Γ′ be obtained from Γ by moving elements to
its m− k − 1 empty slots on the first column (recall that we consider sets with at
most m− 1 elements on the first column).

If m− k ≥ 3, we may then assume that Γ′ has less than (n− 1)− 2 elements on
the first line. Letting r′ = (1, 0, ..., 0), we get

F(r′,Γ′) ≤ 2 + (n− 3) <
2

m− k
+ (n− 1) = F(r,Γ),

which is a contradiction.
If m− k = 2, we may move one element, and assume that Γ′ has n− 2 elements

on the first line. Then, letting again r′ = (1, 0, ..., 0), we get

F(r′,Γ′) = 2 + (n− 2) =
2

m− k
+ (n− 1) = F(r,Γ).

This is again a contradiction, since we assumed that Γ had the maximal number of
elements on the first column. �

Putting everything together, we have proved the following.

Proposition 9.16. Let p ∈ J1,mnK. Let k = bp−1
n c, and d = p−1−kn. Let (r,Γ)

be a minimizer for F , where r ∈ ∆m, and Γ ⊂ J1,mK × J1, nK is a cardinal p − 1
subset with less that m− 1 elements on the first column. Then

(1) the value of F(r,Γ) is given by the table of Figure 3 ;
(2) we may choose (r,Γ) so that the elements of Γ in the first column are the

(j, 1) with j ≥ m− k + 1, and so that rm−k+1 = ... = rm = 0.

We will now show that the previously computed maxima permit to give the
constant Cp. Let us recall how this constant can be computed.

In the following, if Ω is a bounded symmetric domain, and X is a vector tangent
to Ω, we will denote by BΩ

0 (X, ·) the following bilinear form:

BΩ
0 (X, ·) : Y 7−→ iΘ(hΩ)(X,X, Y, Y ).

LetX ∈ TΩ,0 be a unitary vector. Let V ⊂ TΩm,0 be a d-dimensional vector space
containing X. We now assume that the pair (X,V ) realizes the maximum of (4).
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m− k = 1 m− k = 2 m− k = 3 m− k = 4 m− k ≥ 5

r = 0

d+ 2

2
m−k

d = 1 23
16

11
12

21
32

d = 2 7
4

r = 3 31
16

2
m−k−1

d ≥ 4

Figure 3. Values of the maxima of F

We let Aut(Bn)m act on Ω so thatX decomposes in the direct sum TΩ,0 = (TBn,0)⊕m

as X = (α1e
1
1, ..., αme

m
1 ), where (ei1, ..., e

i
n) denotes a unitary basis of the i-th factor

TBn . We let ri = α2
i (1 ≤ i ≤ m), so that

∑
1≤i≤m ri = 1. We may assume that

r1 ≥ r2 ≥ ... ≥ rm.
By our choice of (X,V ), we have

(6) Cp = −B0(X,X) +
∑

λ∈S(V )

λ,

where S(V ) is the set of the p−1 eigenvalues of the restriction of the hermitian form
−B0(X, ·) to X⊥ ∩V (with multiplicities). We let W ⊂ V be a (p− 1)-dimensional

vector subspace, spanned by corresponding eigenvectors, so that V = CX
⊥
⊕W .

Let us now explain how to compute the eigenvalues of the hermitian form
BΩ

0 (X, ·) on the space TΩ,0. First, it is easy to show that for U = (U1, ..., Um),
V = (V1, ..., Vm) in TΩ,0, we have

BΩ
0 (U, V ) =

∑
1≤m

BBn
0 (Ui, Vi).

To simplify the computation, we will temporarily adopt a new normalization on
hBn , so that for any U ∈ TBn,0, the eigenspaces of −BBn

0 (U, ·) are{
C · U for the eigenvalue 2||U ||2;
U⊥ ⊂ TBn for the eigenvalue ||U ||2.

Thus, with this normalization, the eigenvalues of BΩ
0 (X, ·) are 2ri (with mul-

tiplicity 1, and eigenvector ei1) and ri (with multiplicity n − 1, with eigenvectors
ei2, ..., e

i
n), for 1 ≤ i ≤ m.

Proposition 9.17. With the above normalization, the constant Cp is equal to the
minimum of F .

The proof is the same as in [Cad18], so we will only sketch it briefly.

Lemma 9.18. We have Cp ≥ min
r,Γ
F(r,Γ), where r ∈ ∆m, and Γ ⊂ J1,mK× J1, nK

runs among the cardinal p − 1 subsets with less that m − 1 elements on the first
column.
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Proof. We can decompose W = W1

⊥
⊕W2, where

W1 ⊂
⊥⊕

1≤i≤m

Cei1, andW2 ⊂
⊥⊕

1≤i≤m

Vect(ei2, ..., e
i
n).

Let k = dimW1. By the description above of the eigenvalues of BΩ
0 (X, ·), we see

that W2 is spanned by p − 1 − k eigenvectors corresponding to the eigenvalues ri
(1 ≤ i ≤ m).

Let S1 be the sum of the k smallest of the 2ri, and S2 be the sum of the k-th
smallest of the eigenvalues of −B0(X, ·) on W2. Then

Cp = −B0(X,X)− TrB0(X, ·)|W1
− TrB0(X, ·)|W2

≥ −B0(X,X) + S1 + S2 = 2
∑
i≥i

r2
i + S1 + S2.

The eigenvalues appearing in S1 and S2 can be indexed by a subset Γ ⊂ J1,mK ×
J1, nK, with k-elements of the first column corresponding to the k-th smallest 2ri,
and the elements (i, j) to the rj if j ≥ 2.

There are two cases to distinguish. First, if k ≤ m− 1, what has just been said
shows that Cp ≥ F(r,Γ).

Now, if k = m− 1, then CX
⊥
⊕W1 =

⊕m
i=1 C · ei1, so

−B0(X,X)− TrB0(X, ·)|W1 = Tr
(
−B0(X, ·)|⊕m

i=1 C·ei1

)
= 2.

Cp is equal to the first case of the definition of F in Definition 9.9, so Cp =
F(r,Γ). �

Lemma 9.19. We have minr,Γ F (r,Γ) ≥ Cp.

Proof. Let r and Γ realizing this minimum. Let W be the p− 1-dimensional space
spanned by the eigenvectors corresponding to the elements of Γ, and let X =
(
√
r1e

1
1, ...,

√
rme

m
1 ). By Proposition 9.16 (2), we see that W ⊂ X⊥, so if we let

V = C⊕W , we have
−TrB0(X, ·)|V = −B0(X,X)− TrB0(X, ·)|W

= F(r,Γ).

As Cp is defined to be the minimum of the left hand side for all X and V with
dimV = p and X ∈ V unitary, this shows that F(r,Γ) ≥ Cp. �

Thus, Figure 3 gives the constants Cp with our simplifying normalization. To
obtain the table 1, for which the normalization is chosen so that Cnm = 1, we must
replace Cp by Cp

Cnm
. In our current normalization, we have Cnm = n+ 1 according

the the first column of Table 3. This ends the proof of Proposition 9.7.
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