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Abstract. We study the degeneracy of holomorphic mappings tangent to holomorphic foli-
ations on projective manifolds. Using Ahlfors currents in higher dimension, we obtain several
strong degeneracy statements such as the proof of a generalized Green-Griffiths-Lang conjec-
ture for threefolds with holomorphic foliations of codimension one.
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1. Introduction

In the last decades, many efforts have been done to understand the geometry of subvarieties
of varieties of general type. One of the main motivation is the fascinating conjectural relation
between analytic aspects and arithmetic ones. On the geometric side, the philosophy (Green-
Griffiths, Lang, Vojta, Campana) is that positivity properties of the canonical bundle of a
projective manifold should impose strong restrictions on its subvarieties.

One of the first striking results is the following theorem of Bogomolov [1] for surfaces.

Theorem 1.1 (Bogomolov). There are only finitely many rational and elliptic curves on a
surface of general type with c2

1 > c2.

In this theorem, the hypothesis c2
1 > c2 ensures that the cotangent bundle is big, so that

rational and elliptic curves are shown to be leaves of a foliation and then, one can use results
on algebraic leaves of foliations [14].

Two decades later, this result was extended to transcendental leaves of foliations by Mc-
Quillan [19].

Theorem 1.2 (McQuillan). Let X be a surface of general type and F a holomorphic foliation
on X. Then F has no entire leaf which is Zariski dense.

As a consequence he obtains the following.

Corollary 1.3 (McQuillan). On a surface X of general type with c2
1 > c2, there is no entire

curve f : C→ X which is Zariski dense.

It is of course of great interest to generalize these results, even partially, to higher dimen-
sion. Despite the efforts of several people and recent progress (see [9] and [7]), excluding the
existence of Zariski dense entire curves f : C → X when dim(X) ≥ 3 and X is of general
type seems out of reach for the moment. Even on the algebraic side very few results are
available. A generalization to higher dimension of the aforementioned theorem of Bogomolov
was obtained by Lu and Miyaoka in [17].

Theorem 1.4 (Lu-Miyaoka). Let X be a nonsingular projective variety. If X is of general
type, then X has only a finite number of nonsingular codimension-one subvarieties having
pseudoeffective anticanonical divisor. In particular, X has only a finite number of nonsingular
codimension-one Fano, Abelian, and Calabi-Yau subvarieties.

In this paper, we would like to study some generalizations of McQuillan’s result to deal
with maps f : Cp → X, 2 ≤ p ≤ n − 1, which in principle should be more tractable than
entire curves. This can be seen as a transcendental counterpart (in any codimension) of
the Lu-Miyaoka result. The study of several variables holomorphic maps into X in relation
with the hyperbolicity properties of X has been considered in [26], where the extension to
this larger framework of the Demailly-Semple jet-spaces technology was given, together with
several applications. Here, for 1 ≤ p ≤ n− 1, we consider holomorphic mappings f : Cp → X
of generic maximal rank into a projective manifold of dimension n, such that the image of f is
tangent to a holomorphic foliation F on X. We obtain several results of algebraic degeneracy



HIGHER DIMENSIONAL TAUTOLOGICAL INEQUALITIES AND APPLICATIONS 3

in the strong sense (i.e. the existence of a proper closed subset of X containing all such maps).
In order to state our results we need to recall that if L is a big line bundle on a projective
variety X, the non-ample locus NAmp(L) is defined as follows

NAmp(L) :=
⋂

L∼QA+E

Supp(E)

where the intersection runs over all the possible decompositions (up to Q-linear equivalence)
of L into the sum of an ample and an effective divisor. This locus (which is also called the
augmented base locus) has the following property (cf. [10]):

(1.1) NAmp(L) = ∅ ⇐⇒ L is ample

The non-ample locus may be thought of as the locus outside which the line bundle L is ample.
If the foliation is smooth we obtain the following.

Theorem A. Let F be a smooth foliation of dimension p on a projective manifold X, with
p ≤ dimX = n. If X is of general type then the image of any holomorphic mapping f : Cp →
X of generic maximal rank tangent to F is contained in NAmp(KX) ( X.

Most of the examples of foliations are not smooth and the natural generalizations to the
singular case may be highly non-trivial. For instance, in the 2-dimensional case treated by
McQuillan, the technical core of the proof consists in the detailed study of the contribution of
singularities of the foliations. On the other hand, in some cases, we have results reducing the
study of non-smooth foliations to some special classes of singularities, see e.g. [28, 5, 22]. In
particular, thanks to the work of McQuillan, a class of singularities emerged as a very natural
one: the class of canonical singularities (see Definition 4.2). Notice that the more classical
logarithmic simple singularities (see (4.1)) fall in this class. In this framework we obtain
several results. Supposing that the singularities of the foliation are of logarithmic simple type
we show the following.

Theorem B. Let F be a holomorphic foliation of codimension one on a projective manifold
X of dimension n. Suppose SingF consists only of logarithmic simple singularities. If the
canonical line bundle KF of the foliation is big then the image of any holomorphic mapping
f : Cn−1 → X of generic maximal rank tangent to F is contained in NAmp(KF ) ( X.

Theorem B may be seen as an illustration of the Green-Griffiths principle in the setting
of holomorphic maps tangent to foliations for which we formulate the following generalized
Green-Griffiths-Lang conjecture:

Conjecture 1.5 (Generalized Green-Griffiths-Lang conjecture). Let (X,F ) be a projective
foliated manifold where SingF consists only of canonical singularities and KF is big. Then
there exists an algebraic subvariety Y ( X such that any non-degenerate holomorphic map
f : Cp → X tangent to F has image f(Cp) contained in Y .
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In his recent work [7], Demailly has also formulated a generalized Green-Griffiths-Lang
conjecture but one should notice that the way he defines foliations of general type, using
admissible metrics, is different. It seems an interesting question to compare the two defini-
tions. One should insist here on the importance played by the singularities as stressed by the
following examples.

Example 1.6. Take a foliation F on X = P2 with a Zariski dense entire curve f : C →
(X,F ) tangent to it. We have KF = O(d1 − 1) where d1 is the degree of F . Now, consider
a birational map g : P2 → P2 of degree d2 and the foliation G := g∗F . If d2 is sufficiently
large KG becomes positive. Nevertheless, the lifting of the entire curve shows that there exists
a Zariski dense entire curve tangent to G .

Example 1.7. Other examples are due to Lins Neto [16], briefly presented here following [3].
Let E be an elliptic curve with an automorphism of order 6. Then we consider the quotient
X = E × E/T which is a rational surface. Kronecker foliations on E × E therefore provide
foliations on P2. This construction gives singular foliations of degree 4 on P2 with Zariski
dense entire curves. This does not contradict Conjecture 1.5 since the singularities of these
foliations are not canonical.

If the singularities are canonical and the foliation has local first integrals (see (5.1)) we get
the following.

Theorem C. Let F be a holomorphic foliation of codimension one on a projective manifold
of general type X of dimension n. Suppose SingF consists only of canonical singularities
with local first integrals. Then the image of any holomorphic mapping f : Cn−1 → X of
generic maximal rank tangent to F is contained in NAmp(KX) ( X.

As a corollary of the classical result of Malgrange [18] we deduce the following.

Corollary D. Let F be a holomorphic foliation of codimension one on a projective manifold
X, dimX = n. Suppose X is of general type and codimSingF ≥ 3 where all singularities are
canonical. Then the image of any holomorphic mapping f : Cn−1 → X of generic maximal
rank tangent to F is contained in NAmp(KX) ( X.

One should remark that, in the theorem above, we may suppose that codimSingF = 2
and that, locally there exists a formal first integral; in this case, by theorem 0.2 of [18], the
formal integral will be convergent (holomorphic) and then apply Theorem C.

By a result due to Takayama [31] on a variety X of general type every irreducible component
of NAmp(KX) is uniruled. Therefore NAmp(KX) is a very natural place for the images of
the holomorphic maps to land in. Notice however that in Theorems A and C we do not
establish a direct link between the entire curves coming from the holomorphic maps and the
rational curves given by Takayama’s result. Notice also that when the relevant divisor (KX

in Theorems A and C and KF in Theorem B) is ample, by (1.1) the results above exclude
the existence of maximal rank holomorphic mappings tangent to the foliations appearing in
their statements. An explicit and interesting illustration of such a situation is the following.
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Corollary E. (1) Let Xd ⊂ Pn+1 a smooth hypersurface of degree d > n + 2. Let F be
a holomorphic foliation of codimension one on Xd such that SingF consists only of
canonical singularities with local first integrals. Then there is no holomorphic mapping
f : Cn−1 → Xd of generic maximal rank tangent to F .

(2) Let Fd be a holomorphic foliation of codimension one on Pn of degree d ≥ n. Suppose
SingFd consists only of logarithmic simple singularities. Then there is no holomorphic
mapping f : Cn−1 → Pn of generic maximal rank tangent to F .

We construct in §6 explicit examples of varieties of general type with foliations satisfying
the hypotheses of the preceding theorems.

In dimension 3 we obtain the confirmation of Conjecture 1.5 for codimension one foliations

Theorem F. Let F be a holomorphic foliation of codimension one on a projective manifold
X of dimension 3. Suppose SingF consists only of canonical singularities and that the
canonical line bundle KF of the foliation is big. Then there exists an algebraic subvariety
Y ( X such that any non-degenerate holomorphic map f : C2 → X tangent to F has image
f(C2) contained in Y .

Let us indicate the methods of the proofs, which may be of independent interest. We recall
that McQuillan ([19]) showed that one can associate to a transcendental entire curve f a
closed positive current of bidimension (1, 1) called Ahlfors current.

In the second section, we generalize the construction of such currents for arbitrary non-
degenerate holomorphic mappings f : Cp → X in compact Kähler manifolds and show how
classical Nevanlinna theory (see [12] or [29]) translate into intersection theory for such cur-
rents. The problem of associating to several variables holomorphic maps currents with suitable
properties has been recently considered by de Thélin and Burns-Sibony in [8, 4]. We refer the
reader to these interesting papers for more details on their motivations and for applications
in other directions.

The most important part of this theory is developed in the third section which is devoted
to the proof of several tautological inequalities. They are particularly useful when the holo-
morphic mappings we study are tangent to holomorphic foliations. This is the object of
section 4, where we prove that if the singularities of the foliation are mild, we can control the
intersection of the Ahlfors current with the canonical bundle of the foliation. This leads to
the theorems stated above proved in section 5. We illustrate these results, in section 6, with
examples of foliated varieties having the appropriate singularities.

In the final section, we prove a desingularization statement for Ahlfors currents in dimension
3 which is used to obtain the degeneracy of holomorphic mappings tangent to foliations of
general type with canonical singularities.

The present work leads to several questions. Two of them seem particularly interesting.

Question 1.8. Is it possible to remove the hypothesis of the existence of local first integrals
from Theorem C?
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Notice that a positive answer to the previous question when dim(X) = 3 would lead, thanks
to the work of Cano [5], to the non-existence of Zariski dense holomorphic maps from C2 into
a threefold of general type, which are tangent to a holomorphic foliation.

Question 1.9. Is it possible to find (numerical/geometrical) conditions insuring the existence
of (codimension one) holomorphic foliations on varieties of general type?

Acknowledgements. We would like to thank Michael McQuillan for many interesting
discussions on the subject of this paper. We also thank Serge Cantat, Dominique Cerveau,
Charles Favre, Daniel Panazzolo and Frédéric Touzet for useful conversations.

2. Holomorphic mappings and closed positive currents

Let a holomorphic mapping f : Cm → X of maximal rank be given, where X is a complex
projective manifold. We want to associate to f a closed positive current of bidimension (1, 1)
adapting in higher dimension the ideas of [19] (see also [2]) developed in the one-dimensional
case.

We fix once and for all a Kähler form ω on X. On Cm we take the homogeneous metric
form

ω0 := ddc ln |z|2,
and denote by

σ = dc ln |z|2 ∧ ωm−1
0

the Poincaré form.
Consider η ∈ A1,1(X) and for any r > 0 define

Tf,r(η) =

∫ r

0

dt

t

∫
Bt

f ∗η ∧ ωm−1
0 ,

where Bt ⊂ Cm is the ball of radius t. Then we consider the positive currents Φr ∈ A1,1(X)′

defined by

Φr(η) :=
Tf,r(η)

Tf,r(ω)
.

This gives a family of positive currents of bounded mass from which we can extract a subse-
quence Φrn which converges to Φ ∈ A1,1(X)′.

Let us prove that

Claim 2.1. We can choose {rn} such that Φ is moreover closed.

Proof. Take β a smooth (1, 0) form.

Tf,r(∂β) =

∫ r

0

dt

t

∫
Bt

f ∗∂β ∧ ωm−1
0 .

Tf,r(∂β)− Tf,1(∂β) =

∫ r

1

dt

t

∫
Bt

f ∗∂β ∧ ωm−1
0 ,
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which, by Stokes’ formula and then by Fubini’s theorem, is equal to∫ r

1

dt

t

∫
St

f ∗β ∧ ωm−1
0 =

1

2

∫
Br\B1

d ln |z|2 ∧ f ∗β ∧ ωm−1
0 .

Then Cauchy-Schwartz gives

|1
2

∫
Br\B1

d ln |z|2 ∧ f ∗β ∧ ωm−1
0 |

≤ π|
∫
Br\B1

d ln |z|2 ∧ dc ln |z|2 ∧ ωm−1
0 |

1
2 .|
∫
Br\B1

f ∗β ∧ f ∗β ∧ ωm−1
0 |

1
2

≤ C ln(r)
1
2 .

(∫
Br\B1

f ∗ω ∧ ωm−1
0

) 1
2

≤ C ln(r)
1
2 .

(
r
d

dr
Tf,r(ω)

) 1
2

Since f is of maximal rank, Tf,r(ω) is strictly increasing and has at least a logarithmic
growth, therefore

lim inf
r→+∞

r ln r d
dr
Tf,r(ω)

Tf,r(ω)2
= 0,

which concludes the proof. �

Remark 2.2. We remark that all this extends to the setting of meromorphic maps f : Cm →
X. Indeed, in this case, f ∗η may have singularities but it has coefficients which are locally
integrable.

Remark 2.3. One remarks that the above definition can easily be generalized to associate
currents of any bidimension (k, k), 1 ≤ k ≤ m to f : Cm → X. But doing this, one loses
for k 6= 1 the closedness property as discussed in [8] and recently in [4]. Moreover, for our
problem, Green-Griffiths’ philosophy suggests that the geometry of these holomorphic maps
should be determined by a line bundle, KX .

We denote by [Φ] ∈ Hn−1,n−1(X,R) the cohomology class of Φ. A consequence of the First
Main Theorem of Nevanlinna theory (see [29] p.63) is (see also [4, Theorem 3.6] for the same
observation).

Lemma 2.4. Let Z ⊂ X an algebraic hypersurface. If f(Cm) 6⊂ Z then [Φ].[Z] ≥ 0.

Proof. We follow the proof of the First Main theorem given in [29] p.61-63. Let s be a section
of O(Z) such that Z = {s = 0} and fix a metric h on the line bundle O(Z). Then by the
Poincaré-Lelong formula

ddc ln ||s||2 = Z −Θh,
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in the sense of currents, where Θh is the curvature associated to h. Taking pullbacks by f ,
assuming f(0) 6∈ Z, and integrating, we obtain∫

Bt

ddc ln ||s ◦ f ||2 ∧ ωm−1
0 = −

∫
Bt

f ∗(Θh) ∧ ωm−1
0 +

∫
f−1(Z)∩Bt

ωm−1
0 .

By Stokes formula, one has∫
Bt

ddc ln ||s ◦ f ||2 ∧ ωm−1
0 =

∫
St

dc ln ||s ◦ f ||2 ∧ ωm−1
0 ,∫ r

0

dt

t

∫
St

dc ln ||s ◦ f ||2 ∧ ωm−1
0 =

∫
Sr

ln ||s ◦ f ||σ − ln ||s ◦ f(0)||,

where σ is the Poincaré form. Therefore

Tf,r(Θh) =

∫ r

0

dt

t

∫
f−1(Z)∩Bt

ωm−1
0 +

∫
Sr

ln
1

||s ◦ f ||
σ + ln ||s ◦ f(0)||.

This can be written using the usual notations of Nevanlinna theory (see e.g. [29])

Tf,r(Θh) = Nf (Z, r) +mf (Z, r) +O(1).

We can suppose ||s|| ≤ 1 therefore mf (Z, r) ≥ 0 and

Φ(Θh) = lim
rn→+∞

Tf,rn(Θh)

Tf,rn(ω)
≥ 0.

�

3. Tautological inequalities

3.1. The compact case. Let X1 := G(m,TX) be the Grassmannian bundle, π : X1 → X

the natural projection, S1 the tautological bundle on X1 and L :=
m∧
S1.

For f : Cm → X a holomorphic mapping of maximal rank, we have a natural lifting
f1 : Cm → X1 defined by f1 = (f, [ ∂f

∂t1
∧ · · · ∧ ∂f

∂tm
]). Then we can associate a closed positive

current Φ1 to f1. The tautological inequality becomes

Theorem 3.1. With the notation above we have

[Φ1].L ≥ 0.

Proof. The Kähler form ω induces a metric on L of curvature Θ. The map ∂f
∂t1
∧ · · · ∧ ∂f

∂tm
:

Cm →
m∧
TX defines a section s ∈ H0(Cm, f ∗1L). By the Poincaré-Lelong formula, we have:

ddc ln ||s||2 = (s = 0)− f ∗1 Θ.

Therefore, denoting ξ :=
∥∥∥ ∂f∂t1 ∧ · · · ∧ ∂f

∂tm

∥∥∥2

, we have

−Tf1,r(Θ) ≤
∫ r

0

dt

t

∫
Bt

ddc ln ξ ∧ ωm−1
0 ,
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and argueing as in the proof of Lemma 2.4, and using moreover the convexity of the logarithm,
we obtain

−Tf1,r(Θ) ≤ C +
m

2
ln

∫
Sr

ξ
1
mσ.

Using the Euclidean metric form ϕ0 which satisfies
ϕm0
m!

= r2m−1σ ∧ dr, we have∫
Sr

ξ
1
mσ =

1

r2m−1

d

dr

1

m!

∫
Br

ξ
1
mϕm0 =

1

m!

1

r2m−1

d

dr

(
r2m−1dT̃

dr

)
,

where we denote

T̃ (r) :=

∫ r

0

dt

t2m−1

∫
Bt

ξ
1
mϕm0 .

Now, we use the following classical lemma in Nevanlinna theory (see e.g. ??).

Lemma 3.2. Let F : R+ → R+ be a postive, increasing, derivable function. For every ε > 0,
there exists E ⊂ R satisfying

∫
E
dr ≤

∫ +∞
1+ε

1
x ln1+ε(x)

dx < +∞ such that for every x 6∈ E,

F ′(x) ≤ F (x) ln1+ε(F (x)).

We apply this lemma to the function r2m−1 dT̃
dr
, and we obtain that

d

dr

(
r2m−1dT̃

dr

)
≤ r2m−1dT̃

dr
ln1+ε(r2m−1dT̃

dr
),

outside E. The lemma applied to T̃ gives

dT̃

dr
≤ T̃ (r) ln1+ε(T̃ (r)),

outside E. Now, a consequence of the classical Hadamard inequality is

ξ
1
mϕm0 ≤ f ∗ω ∧ ϕm−1

0 .

Therefore we obtain

T̃ (r) ≤
∫ r

0

dt

t2m−1

∫
Bt

f ∗ω ∧ ϕm−1
0 = Tf,r(ω).

Finally, these inequalities give

(3.1) −Tf1,r(Θ) ≤ O(ln(Tf,r(ω)),

outside E, which proves the theorem. �
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3.2. The logarithmic case. Let X be a smooth projective variety, D ⊂ X a simple normal
crossing divisor, ω a Kähler metric on X and f : Cm → X a holomorphic mapping of

maximal rank such that f(Cm) 6⊂ D. We set X1 := P(
m∧
TX(− log(D))). We have a natural

map f1 : Cm → X1 and a tautological line bundle L := OX1(1).

Theorem 3.3. Tf1,r(L) ≤ N1
f (D, r) +O(lnTf,r(ω))‖.

(As usual the symbol ‖ means that the inequality holds outside a set of finite Lesbesgue
measure).

Proof. We follow the approach given in [11] for the 1-dimensional case. We write D =
∑
Di.

Let si be sections of the Di and we choose hermitian metrics on the associated line bundles.
We consider a smooth metric on TX(− log(D)) induced by a singular (1, 1)-form

ωsm := Aω +
∑ d||si|| ∧ dc||si||

||si||2
.

We also consider a singular hermitian metric on TX(− log(D)) induced by

ω̃ := ω +
∑ d||si|| ∧ dc||si||
||si||2(ln ||si||)2

.

The map f1 together with the map
m∧
TCm → OX given by ∂

∂t1
∧ · · · ∧ ∂

∂tm
→ 1 gives a map

g : Cm → Y := P(
m∧
TX(− log(D))⊕ OX). Denote by M the tautological line bundle over Y .

We have an inclusion X1 ⊂ Y and OY (X1) = M. The forms ωsm and ω̃ induce respectively
smooth and singular metrics on M and L.

Now, we apply the First Main Theorem to g and M with respect to the singular metric:

Tg,r(c1(M)s) = Ng(X1, r) +mg(X1, r) +O(1).

The image of g meets X1 only over D with multiplicity at most 1, therefore

Ng(X1, r) ≤ N1
f (D, r).

We consider the blow-up p : Z → Y along the zero section of
m∧
TX(− log(D)). Then we have

a holomorphic map q : Z → X1 and

q∗L = p∗M(−E)

where E is the exceptional divisor in Z. Therefore we obtain

Tf1,r(c1(L)s) ≤ N1
f (D, r) +mg(X1, r)−mg(E, r) +O(1).

Comparing the two metrics, we see that

Tf1,r(c1(L)sm) ≤ Tf1,r(c1(L)s) +O(lnTf,r(ω)).

We can suppose mg(E, r) ≥ 0 so to finish the proof we just have to bound

mg(X1, r) =

∫
Sr

ln
1

||s ◦ f ||
σ,
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where s is a holomorphic section of OY (X1). Let

ξ := f ∗(ω̃m)

(
∂

∂t1
∧ · · · ∧ ∂

∂tm

)
where ω̃m is the metric induced on

m∧
TX(− log(D)) by ω̃. To conclude we need to find an

upper bound for ∫
Sr

ln (ξ)σ.

Following the end of the proof of Theorem 3.1, we are reduced to find a bound for∫ r

0

dt

t

∫
Bt

f ∗ω̃ ∧ ωm−1
0 .

Recall that we have the following fomula

ddc ln(ln ||si||2) =
ddc ln ||si||2

ln ||si||2
− d ln ||si||2 ∧ dc ln ||si||2

(ln ||si||2)2
.

Therefore
ω̃ ≤ Cω −

∑
ddc ln(ln2 ||si||)

for a constant C, and finally, by Stokes formula∫ r

0

dt

t

∫
Bt

f ∗ω̃ ∧ ωm−1
0 ≤ O(lnTf,r(ω))−

∑∫
Sr

ln(ln2 ||si||)σ.

Since we may assume ||si|| < δ < 1, the theorem is proved. �

Remark 3.4. We remark that, in the particular case m = dimX, we recover the second main
theorems of Griffiths-King [12].

3.3. Refined inequalities. In the case m = 1 of entire curves, McQuillan [19] shows that
one can include in the tautological inequality the defect with respect to a finite number of
reduced points. Following the approach of [30] to this question, we would like to show that
in our situation the previous inequalities can be made more precise by including the defect
with respect to submanifolds of codimension at least 2.

Lemma 3.5. Let ∆ ⊂ Cn be an n-dimensional disc with holomorphic coordinates z1, . . . , zn,

V ⊂ ∆ be the locus zk+1 = · · · = zn = 0 and π : ∆̃ → ∆ be the blow-up of ∆̃ along V . Let
E = π−1(V ) be the exceptional divisor. Then

π∗ (Ωp
∆) ⊂ Ωp

∆̃
(logE)⊗I p−k

E ,

for p ≥ k + 1.

Proof. Notice that ∆̃ ⊂ ∆×Pn−k−1 is defined by ∆̃ = {(z, l) : zilj = zjli, k+ 1 ≤ i, j ≤ n}. In

the affine chart defined by lj 6= 0 we take the coordinates zi, zj,
lq
lj

for 1 ≤ i ≤ k, k+1 ≤ q ≤ n

and q 6= j. The exceptional divisor E is defined by zj = 0. We have π∗(dzi) = dzi for
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1 ≤ i ≤ k, π∗(dzj) = dzj = zj

(
dzj
zj

)
and π∗(dzq) = zjd

(
lq
lj

)
+ lq

lj
dzj = zj

(
d
(
lq
lj

)
+ lq

lj

dzj
zj

)
.

Now take ω := dzi1 ∧ · · · ∧ dzip , where p ≥ k + 1. From the previous relations, it is obvious
that π∗ω is a differential p-form with logarithmic poles on E whose coefficients vanish on E
to order at least p− k. �

The next tool we need is the Lemma on logarithmic derivatives. For a meromorphic function
on C it was done by Nevanlinna [23], and then generalized on Cm by Vitter [32] (see also [24]
and [33] for other generalizations).

Theorem 3.6. Let f be a meromorphic function on Cm. Then∫
Sr

ln+

∣∣∣∣∣
∂
∂ti
f

f

∣∣∣∣∣σ ≤ O(lnTf,r + ln r).

Now, we can prove the following

Theorem 3.7. Let H be an ample line bundle on a projective manifold X of dimension n.
Let Z ⊂ X be a submanifold of codimension n − k ≥ 2. Let f : Cm → X be a holomorphic
map of maximal rank. Let α be a positive rational number and l be a positive integer such
that αl is an integer. Let σ ∈ H0(X,SlΩm

X ⊗ (αlH)) such that f ∗σ is not identically zero. Let

W be the zero divisor of σ in X1 := P(
m∧
TX). Then

(3.2)
1

l
Nf1(W, r) + (m− k)mf (Z, r) ≤ αTf,r(H) +O(lnTf,r(H) + ln r)||.

Proof. Let π : X̃ → X be the blow-up of Z and E = π−1(Z). Let f̃ : Cm → X̃ be the lifting
of f and let τ = π∗σ. By lemma 3.5, τ is a holomorphic section of SlΩm

X̃
(logE) ⊗ π∗(αlH)

which vanishes to order at least l(m − k) on E. Let sE be the canonical section of E. Let

τ̃ = τ

s
l(m−k)
E

which is a holomoprhic section of SlΩm
X̃

(logE)⊗π∗(αlH)⊗ (−l(m− k)E) over X̃.

We consider hE a smooth hermitian metric on E and hH a smooth hermitian metric on H.

2l(m− k)mf̃ (E, r) =

∫
Sr

ln+ 1

||sl(m−k)
E ◦ f̃ ||2

h
l(m−k)
E

σ +O(1)

≤
∫
Sr

ln+ 1

||τ ◦ f ||2
hαlH

σ +

∫
Sr

ln+ ||τ̃ ◦ f̃ ||2
hαlH h

−l
E

σ +O(1)

= −
∫
Sr

ln ||τ ◦ f ||2hαlH σ +

∫
Sr

ln+ ||τ ◦ f ||2hαlH σ +

∫
Sr

ln+ ||τ̃ ◦ f̃ ||2
hαlH h

−l
E

σ +O(1).

Taking the logarithms of global meromorphic functions as local coordinates, the lemma on
the logarithmic derivative 3.6 implies∫

Sr

ln+ ||τ ◦ f ||2σ = O(lnTf,r(H) + ln r),
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∫
Sr

ln+ ||τ̃ ◦ f̃ ||2σ = O(lnTf,r(H) + ln r).

Therefore, by the First Main Theorem, we obtain

2l(m− k)mf̃ (E, r) ≤ −2Nf1(W, r) + 2αlTf,r(H) + 2lTf1,r(OX1(1)) +O(lnTf,r(H) + ln r).

The inequality 3.1 implies that Tf1,r(OX1(1)) = O(lnTf,r(H) + ln r) and this concludes the
proof. �

Corollary 3.8. Let X be a projective manifold of dimension n, H an ample line bundle on
X, Z ⊂ X a submanifold of codimension n− k ≥ 2. Let f : Cm → X a holomorphic map of
maximal rank. Then

Tf1,r(OX1(1)) + (m− k)mf (Z, r) ≤ O(lnTf,r(H) + ln r).

Proof. Choosing α sufficiently large, OX1(1) ⊗ (αH) is ample over X1. Then if we choose l
sufficently large, OX1(l)⊗ (αlH) is very ample. Then there exists σ ∈ H0(X,SlΩm

X ⊗ (αlH))
such that the defect under the mapping f1

lim inf
r

mf1(W, r)

Tf1,r(OX1(l)⊗ (αlH))
= 0,

where W ⊂ X1 is the zero divisor of σ. Therefore, from inequality 3.2, we deduce

Tf1,r(OX1(1)) + (m− k)mf (Z, r) ≤ O(lnTf,r(H) + ln r).

�

4. Holomorphic mappings and foliations

4.1. The smooth case. A smooth foliation of dimension p on X is given by an integrable
subbundle F ⊂ TX of rank p. So we have an exact sequence

0→ F → TX → NF → 0,

where NF is called the normal bundle of the foliation. The line bundle KF := det(F ∗) is the
canonical bundle of the foliation. Notice that we have an isomorphism KX = KF ⊗det(N∗F ).

Proof of Theorem A. Let f : Cp → X be a holomorphic map of generic maximal rank which
is a leaf of the foliation F , i.e. it is tangent to F . The foliation F defines a section

F ⊂ X1 := P(
p∧
TX) over X and the tautological line bundle verifies L|F = π∗K−1

F . From
Theorem 3.1 we have

0 ≤ [Φ1].L = [Φ].K−1
F = [Φ].K−1

X − [Φ]. det(NF ).

Suppose that the image of f is not contained in NAmp(KX). Then there exists a decom-
position of the canonical divisor KX ∼Q A + E into the sum of a Q-ample divisor A and
Q-effective divisor E such that the image of f is not contained in Supp(E). By the smooth-
ness assumption the normal bundle NF |F is flat, we obtain using Lemma 2.4

[Φ].K−1
X − [Φ]. det(NF ) = −[Φ].KX = −[Φ].A− [Φ].E < 0,
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which is a contradiction. �

Notice that when the foliation is not smooth the control of its normal bundle is a delicate
point.

4.2. The singular case. In general, there is no reason that the foliations we are working
with is non-singular. Therefore, it is important to generalize the preceding result to singular
foliations. We consider singular holomorphic foliations F of codimension one on a projective
manifold X of dimension n. It is locally given by a differential equation ω where

ω =
n∑
i=1

ai(z)dzi

is an integrable 1− form, i.e. ω∧ dω = 0, and the coefficients ai have no common factor. The
singular locus SingF is locally given by the common zeros of the coefficients ai.

The foliation can be defined by a collection of 1-forms ωj ∈ Ω1
X(Uj) such that ωi = fijωj

on Ui ∩ Uj, fij ∈ O∗X(Ui ∩ Uj).
As in the smooth case, there are two holomorphic line bundles associated to F , the normal

bundle NF and the canonical bundle KF of the foliation F . NF is defined by the cocycle fij
and KF = KX ⊗NF .

In the case of surfaces, one uses the theorem of resolution of singularities of Seidenberg [28]
to work only with reduced singularities. In general, one may expect theorems of resolution
of singularities to reduce the problem to canonical singularities as introduced by McQuillan
[21] following the approach of the Mori program.

Definition 4.1. Let (X,F ) be a pair where X is a projective variety and F a foliation. Let

p : (X̃, F̃ )→ (X,F ) be a birational morphism of pairs. We can write

KF̃ = p∗KF +
∑

a(E,X,F )E.

a(E,X,F ) is independent of the morphism p and depends only on the discrete valuation that
corresponds to E. It is called the discrepancy of (X,F ) at E. We define

discrep(X,F ) = inf{a(E,X,F );E corresponds to a discrete valuation

such that CenterX(E) 6= ∅ and codim(CenterX(E)) ≥ 2}.

We say that (X,F ) has canonical singularities if discrep(X,F ) ≥ 0.

Following McQuillan [21], we may generalize this definition to singularities of foliated pairs:
consider a triple (X,F , B) where X is a projective variety, F is a foliation on it and B =∑

i

(
1− 1

mi

)
Bi is a boundary Q–Cartier divisor, where mi ∈ N∪{∞}. Consider the following

function on Cartier divisors of X:

ε(H) :=

{
0 if H is invariant by the foliation
1 if H is not invariant by the foliation.
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For every p : (X̃, F̃ ) → (X,F ) blow up with (reduced) exceptional divisor E =
∑

j Ej,

write p∗(Bi) =
∑

j νi(Ej)Ej +B′i, where B′i is the strict transform of Bi.

Definition 4.2. (X,B,F ) is said to be

(1) terminal if a(Ej, X,F )−
∑

i

(
1− 1

mi

)
εiνi(Ej) > 0,

(2) canonical if a(Ej, X,F )−
∑

ij

(
1− 1

mi

)
εiνi(Ej) ≥ 0,

(3) log terminal if a(Ej, X,F )−
∑

i

(
1− 1

mi

)
εiνi(Ej) > −ε(Ej),

(4) log canonical if a(Ej, X,F )−
∑

i

(
1− 1

mi

)
εiνi(Ej) ≥ −ε(Ej),

for every blow up p : (X̃, F̃ )→ (X,F ), where εi := ε(Bi) and νi(Ej) are as above.

Remark 4.3. Up to now, there are few theorems of resolution of singularities: it is known for
codimension 1 foliations in dimension 3 [5] and recently for foliations by curves in dimension
3 [22].

First, we consider the situation where we have a singular codimension 1 foliation with
logarithmic simple singularities i.e. we can write ω in local coordinates

(4.1) ω =

(
r∏
i=1

zi

)
r∑
i=1

λi
dzi
zi
,

where
∑r

i=1 miλi 6= 0, for any non-zero vector (mi) ∈ Nr.
In particular, the only integral hypersurfaces are the components of z1 . . . zr = 0. We can

suppose, up to doing some blow ups, that the foliation have simple singularities adapted to
a normal crossing divisor [5]. This means that we have an invariant simple normal crossing
divisor E such that every P ∈ SingF belongs to at least r− 1 irreducible components of E.

We consider X1 := P(
m∧
TX(− log(E))) with the natural projection π : X1 → X.

The foliation F defines a section F ⊂ X1 over X and

OX1(−1)|F = π∗K−1
F .

Fix an ample divisor H on X.

Proposition 4.4. With the notation above we have

lim
r→+∞

N1
f (E, r)

Tf,r(H)
= 0.

In order to prove Proposition 4.4 we will prove the following Lemma:

Lemma 4.5. Let (X,H) be a smooth polarized projective variety and C a smooth closed
subvariety of codimension two. Let XC be the formal completion of X around C and ι : V ↪→
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XC be a smooth formal subvariety containing C of codimension one. Then we can find a
sequence of global sections sm ∈ H0(X,H⊗m) such that ι∗(sm) ≥ qmC with

lim
m→∞

m

qm
= 0.

Proof. Observe that C is a divisor in V . Denote by NC the normal line bundle of C inside
V and by Ci the i–th formal neigborhood of C inside V . For every positive integers i ≥ 1 and
m ≥ 1, we have an exact sequence

0→ H⊗m|C ⊗N⊗−(i−1)
C −→ H⊗m|Ci −→ H⊗m|Ci−1

→ 0.

Denote by Ei
m the kernel of the composite map

H0(X,H⊗m) −→ H0(V, ι∗(H⊗m)) −→ H0(Ci, H
⊗m).

Fix ε > 0 sufficiently small. We will prove that, for m � 0 we have that Em1+ε

m 6= {0}, and
this will be enough to conclude.

The snake lemma applied to the exact sequence above gives rise to an inclusion

γim : Ei−1
m /Ei

m ↪→ H0(C,H|⊗mC ⊗N−(i−1)
C ).

Consequently

dim(Ei
m) ≥ dim(Ei−1

m )− h0(C,H|⊗mC ⊗N−(i−1)
C ).

By Riemann–Roch Theorem (or Hilbert–Samuel Theorem) we can find constants A ans A1

independent of m and i such that h0(X,H⊗m) ≥ Amn and h0(C,H⊗m⊗N−iC ) ≤ A1(m+i)n−2.
Thus we obtain

dim(Em1+ε

m ) ≥ Amn −
m1+ε∑
i=1

A1(m+ (i− 1))n−2.

Since, for a suitable A2 independent on m we have that, for m� 0,

m1+ε∑
i=1

A1(m+ (i− 1))n−2 ≤
∫ m1+ε

1

(m+ (t− 1))n−2dt ≤ A2m
(n−2)(1+ε),

the conclusion follows.
�

Let us show how lemma 4.5 implies lemma Proposition 4.4.

Proof of Proposition 4.4. Let E1 be an irreducible component of E. The two subvarieties
f(Cn−1) and E1 are both invariant for the foliation. Let V be the leaf containing f(Cn−1).
We may suppose that E1 and V intersect properly on an irreducible C, component of SingF
which is a smooth closed subvariety of codimension two of X. We apply Lemma 4.5 and we
obtain

N1
f (E1, r) = N1

f (C, r) ≤ 1

qm
Nf ({sm = 0}, r) ≤ m

qm
Tf,r(H) + cm(H)

where cm(H) is a constant depending on f , H and sm but independent on r. Lemma 4.4
follows once one divide the inequality above by Tf,r(H) and let m and r tend to infinity. �
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Now, we use Theorem 3.3 to obtain as an immediate consequence the following.

Theorem 4.6. Let F be a holomorphic foliation of codimension one on a projective manifold
X, dimX = n. Suppose SingF consists only of logarithmic simple singularities. Consider a
holomorphic mapping f : Cn−1 → X of generic maximal rank tangent to F which is Zariski
dense. Then

[Φ].K−1
F ≥ 0.

This result implies Theorem B of the introduction.

Proof of Theorem B. Let f : Cn−1 → X be a holomorphic map of generic maximal rank
which is a leaf of the foliation F , i.e. it is tangent to F . Suppose that the image of f is not
contained in NAmp(KF ). Then there exists a decomposition of the canonical divisor of the
foliation KF ∼Q A + E into the sum of a Q-ample divisor A and Q-effective divisor E such
that the image of f is not contained in Supp(E). Using Lemma 2.4 we get

[Φ].K−1
F = −[Φ].A− [Φ].E < 0,

which is in contradiction with Theorem 4.6. �

5. Applications

We deal with foliations with canonical singularities and local holomorphic first integrals i.e.
the form ω can be written

(5.1) ω = gdf

with g and f holomorphic and g nonvanishing.

Proof of Theorem C. Suppose we have such a map f . Since we have local first integrals, by

Hironaka’s theorem [13], we have a resolution π : (X̃, F̃ ) → (X,F ) where (X̃, F̃ ) has only

logarithmic simple singularities. Consider the (meromorphic) lifting f̃ : Cn−1 → X̃. Then
Theorem 4.6 gives

[Φ̃].K−1

F̃
≥ 0.

Since we have canonical singularities we have

KF̃ ≥ π∗KF

and therefore

(5.2) [Φ].K−1
F ≥ 0.

The existence of local integrals ω = gdf implies that dω = β ∧ ω, where β = dg
g

is a

holomorphic 1-form.
Let us take an open covering {Uj}j∈I of X and holomorphic one-forms ωj ∈ Ω1

X(Uj) gener-
ating F such that

dωj = βj ∧ ωj.
On each Ui ∩ Uj we also have

ωi = gijωj
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where the cocycle {gij} defines NF . So, we have

βi ∧ ωi = dωi = dgij ∧ ωj + gijdωj =

(
dgij
gij

+ βj

)
∧ ωi,

and therefore (
dgij
gij

+ βj − βi
)
∧ ωi = 0.

We can find smooth (1, 0)-forms γj ∈ A1,0(Uj) such that

γj ∧ ωj = 0,

on Uj, and

dgij
gij

= βi − βj + γi − γj,

on Ui ∩ Uj. The 2-form defined by
1

2iπ
d(βj + γj)

on Uj represents the first Chern class of NF .
The relation dωj = βj ∧ ωj implies that dβj|F ≡ 0. Moreover dγj|F ≡ 0. Therefore we

obtain

(5.3) [Φ].NF = 0.

Suppose that the image of f is not contained in NAmp(KX). Then there exists a decom-
position of the canonical divisor KX ∼Q A + E into the sum of a Q-ample divisor A and
Q-effective divisor E such that the image of f is not contained in Supp(E). Using Lemma
2.4, (5.2) and (5.2) we conclude thanks to the following contradiction

0 < [Φ].A+ [Φ].E = [Φ].KX = [Φ].KF + [Φ].N∗F = [Φ].KF ≤ 0.

�

When SingF has codimension ≥ 3 we can use the following theorem due to Malgrange
[18].

Theorem 5.1. Let F be a germ of foliation at (Cn, 0). If codimSingF ≥ 3 then F has a
holomorphic first integral.

We can now give the (immediate) proof of the corollaries stated in the introduction.

Proof of Corollary D. It follows from Theorems C and 5.1. �

Proof of Corollary E. Let Xd (respectively Fd) be as in the statement. We have KXd =
OXd(d−n−2) (respectively KFd

= OPn(d−n+1)). Therefore item (1) follows from Theorem
C and (1.1) and item (2) follows from Theorem B and (1.1). �
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6. Examples

When a foliation has a holomorphic first integral, it is canonical if and only if the level sets
are log–canonical:

Proposition 6.1. Let (X,F ) be a codimension one foliation. Suppose that, locally on X,
the conormal bundle of F is generated by ω = d(f); suppose that the divisor D := {f = 0}
is log–canonical. Then the foliation F is canonical.

Proof. Let π : (X̃, D̃)→ (X,D) be a Hironaka resolution of the pair (X,D) and let E1, . . . , Er
be the divisors contracted by π. By construction D̃ is the strict transform of D. Denote by

KX , resp. KX̃ , resp. KD, resp. KD̃ the canonical sheaf of X, resp. X̃, resp. D, resp D̃. By
construction, there are positive constants bi and ri such that KX̃ = π∗(KX) +

∑
i biEi and

π∗(D) = D̃ +
∑

i riEi.
By adjunction formula we get KD̃ = π∗(KD) +

∑
i(bi − ri)Ei|D̃. Since D is log–canonical,

we have that bi − ri ≥ −1.
Let k(X) be the function field of X and R ⊂ k(X) be a discrete valuation ring with fraction

field k(X). Let p be a uniformizer of R. Suppose that D is locally given by pNu with u ∈ R∗.
Thus the restriction of ω to Spec(R) is (N−1)pN−1ud(p)+pNd(u). This implies the following:

Denote by NF̃ the normal line bundle of the foliation induced by F on X̃; then

π∗(NF ) = NF̃ +
∑
i

(ri − 1)Ei.

Consequently, since KX = KF −NF and KX̃ = KF̃ −NF̃ , a straightforward calculation gives

KF − π∗(KF ) =
∑
i

(bi − ri)Ei +
∑
i

Ei.

The conclusion follows.
�

Now, let us consider a ramified cover π : Y → X and the induced foliation on Y , G := π∗F .
We can write

KY := π∗(KX + ∆),

where ∆ =
∑

i

(
1− 1

mi

)
Zi.

Then we have

Lemma 6.2. If (X,∆,F ) has canonical singularities then (Y,G ) has canonical singularities.

Proof. We have

KG = π∗KF +
∑
i

ε(Zi)π
∗
(

1− 1

mi

)
Zi.
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Therefore, if EY is an exceptional divisor over Y dominating EX with multiplicity r, we
have for the corresponding discrepancies

a(EY ) = r(a(EX)−
∑
i

(
1− 1

mi

)
εiνi(EX)) + ε(EX)(r − 1).

�

The following result describes locally how one can produce foliations with canonical singu-
larities.

Proposition 6.3. Let (U ,F ) be a germ of a smooth foliation on a complex manifold of
dimension n ≥ 3 and D ⊂ U a smooth divisor. Let π : (V ,G ) → (U ,F ) be a covering
ramified along D where G := π∗F . Then

(1) If F is transverse to D then G is smooth.
(2) If D has only isolated non-degenerate quadratic-type tangencies with F (i.e. if D =

(h = 0) then the restriction of h to a leaf has only isolated non-degenerate critical
points), then G has isolated canonical singularities.

(3) If the degree of the covering π is 2 and D has only quadratic-type tangencies with F
(i.e. if D = (h = 0) then the restriction of h to a leaf has multiplicity less or equal to
2 at any point) then G has canonical singularities.

Proof. (1) If F is transverse to D, we can choose local coordinates (z1, . . . , zn) on U
such that F is given by dz1 = 0 and D = (z2 = 0). The covering π is given by
(z1, t, . . . , zn)→ (z1, t

m, . . . , zn) and therefore G is given by dz1 = 0.
(2) If D has only isolated quadratic-type tangencies with F , locally by the holomorphic

Morse lemma, we can find local coordinates such that h the local equation defining D
is written,

h(z) = z1 +
n∑
i=2

z2
i .

So, in local coordinates (t, z2, . . . , zn), G is given by d(tm −
∑

i≥2 z
2
i ) = 0. Now, from

[27], we know that hypersurfaces given by tm −
∑

i≥2 z
2
i = 0 have at most canonical

singularities if 1
m

+ n−1
2
> 1. Then we conclude by proposition 6.1

(3) If S is a germ of leaf, then by the hypotheses the pair (S,
(
1− 1

2

)
D|S) is canonical

and we conclude by Lemma 6.2.
�

Now, let us see how we can ensure globally the conditions of the previous proposition for a
smooth divisor D in a complex projective manifold X.

Let X1 := G(n − 1, TX) be the Grassmannian bundle. Then the inclusion i : D ↪→ X
induces a lift i1 : D → X1. A smooth codimension-one foliation F on X gives a section
F ⊂ X1.

The condition for F to be transverse to D is equivalent to

i1(D) ∩ F = ∅.
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The condition for D to have only isolated non-degenerate quadratic-type tangencies with
F translates into the fact that i1(D) ∩ F is finite and i1 has some non-degeneracy property
over that set.

Let us illustrate these situations in the case where X is an abelian variety.

Proposition 6.4. Let A be an n-dimensional complex abelian variety and L a line bundle
on A. Let D be a smooth divisor in the linear system |mL|, where m > 1. Let π : X → A
be the degree m cyclic cover of A ramified along D. If F is a generic linear codimension
one foliation on A, the induced foliation G := π∗F on X has at most isolated canonical
singularities.

Proof. By the triviality of the tangent bundle TA, the lifting i1 : D → X1 described above
yields a map

ϕ : D → Pn−1,

which is locally defined by [∂h/∂z1 : . . . : ∂h/∂zn], where {h = 0} is a local equation for D.
If we choose a base dz1, . . . , dzn of invariant differentials, the foliation F corresponds to a
point p ∈ Pn−1. We have two cases. If ϕ is not dominant, then for a generic choice of F the
preimage ϕ−1(p) will be empty, that is, D is transverse to F . Therefore the pullback π∗F is
smooth, by the local result above, item (1).

If ϕ is dominant, for a generic choice of F , we have that ϕ−1(p) is smooth. Notice that
we may assume that D is given locally by the equation {z1 + Q(z1, . . . , zn) = 0}, where
deg(Q) ≥ 2 (if not, D is transverse to F and we are done as before). Then, the smoothness
of ϕ−1(p) is equivalent to the fact that (∂2Q/∂zi∂zj) is non-degenerate. Therefore we are
done by the local result above, item (2). �

Example 6.5. Let L be an ample line bundle on an abelian variety A. Let D ∈ |mL| be
a smooth divisor and π : X → A be the degree m cyclic cover ramified along D. Observe
that X is of general type. Take a generic linear codimension one foliation F on A. If
n := dim(A) ≥ 3, by Proposition 6.4 the foliated pair (X, π∗F ) satisfies the hypotheses of
Corollary D. In particular X contains no maximal rank holomorphic mapping f : Cn−1 → X
tangent to π∗F .

Remark 6.6. Using [25, Main Theorem] one may obtain that f : Cn−1 → X is not Zariski
dense in the previous example.

Now we turn back to the condition (3) in the local result above i.e. when D has only
quadratic-type tangencies with F . This condition can be verified considering the second
jet-bundle X2 as defined in [26] which we refer to for details. X2 is a Grassmannian bundle
over X1. We have a lifting i2 : D → X2 and the foliation defines a section s2 : X → X2. The
previous condition translates as

i2(D) ∩ s2(X) = ∅.
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7. The dimension 3 case

7.1. Desingularization of currents. In the case of surfaces, the following property of the
current is quite useful and often used in [19] and [2]. Consider a tower of blow-up mappings
πk : Xk → Xk−1, with the convention that X0 = X the original surface and Ek denotes the
corresponding exceptional divisor. Then

lim
k→∞

[Φk].[Ek] = 0,

where [Φk] is the current associated to the lifting of f : C→ X.
In fact, McQuillan [20] proves the following stronger result.

Theorem 7.1. Let (Y ,F ) be a foliated non-singular surface with canonical singularities and
b a formal branch of F through a canonical singularity z. Let Y1 be obtained by blowing up
Y0 = Y in z, with b1 the proper transform of the branch b0 = b, Y2 from Y1 by blowing up the
crossing point of b1 with the exceptional divisor etc., and Ek the exceptional curve on Yk blown
down by ρk,k−1 (ρkm from Yk to Ym, m < k being the projection) then for H ample there is a
positive rational constant α such that for all k, every sufficiently large and divisible multiple
of α(

√
(k)−1ρ∗k0H − Ek is generated by its global sections outside the exceptional curves other

than Ek.

In this section we would like to prove an analoguous desingularization statement for the
currents constructed above, in the case dimX = 3, that will be used in a sequel of this paper.

We have to study the following situation. Let (X,F ) be a smooth projective variety of
dimension three equipped with a foliation of codimension one. Let Z be a smooth leaf of the
foliation and C be a compact curve contained in it.

We perform the following construction. We denote X = X0, V = V0 and C = C0. Let
f1 : X1 → X0 be the blow up along C0, E1 be the exceptional divisor and Z1 ⊂ X1 the
strict transform of Z0. Let C1 := E1 ·Z1. Inductively we define the sequence (Xk, Ck, Ek, Zk)
where: fk,k−1 : Xk → Xk−1 is the blow up of Xk−1 along Ck−1, Ek is the exceptional divisor
of fk,k−1 and Zk is the strict trasform of Zk−1. We will denote by fk the natural projection
fk : Xk → X0 and, for every i < k, we denote by fk,i the natural projection fk,i : Xk → Xi.
Let i < k, by abuse of notation, we will denote by Ei the divisor f ∗k,i(Ei). We fix an ample
divisor H on X0 and we denote by H the nef divisor f ∗k (H) on Xk.

Then we want to prove the following.

Theorem 7.2. In the situation above, there is a constant α independent of k such that, for
every k and m sufficiently big (possibly depending in k), the divisor on Xk

m
( α

k1/3
H − Ek

)
is effective.

For this we need the following.
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Proposition 7.3. With the notation above, for α sufficiently big, the line bundle

Fα,k := αk2/3H −
k∑
i=1

Ei

is effective on Xk.

The proof consists in four steps which will be stated in the lemmas below. But first let us
show that this proposition implies the theorem.

Proof of Theorem 7.2. Using the notations below, denoting by Ei the strict transform of Ei
in Xk and remarking that

∑k
i=1Ei =

∑k
i=1 iEi, we get

α

k1/3
H − Ek =

1

k

((
αk2/3H −

k∑
i=1

Ei

)
+

k−1∑
j=1

jEj

)
.

The conclusion easily follows because the two terms on the right are effective divisors. �

The first step is

Lemma 7.4. If α is sufficiently big independently of k, then F 3
α,k > 0.

Proof. A systematic use of the projection formula gives the following relations:

(H2, Ei) = 0,

(H,E2
i ) = (H,C0) = r0 for a suitable r0 > 0,

(Ei, Ej, Ek) = 0 if k > j > i;

(E2
i , Ej) = 0 if j > i,

and

(E2
i , Ej) = −(Ej, Cj) if j < i.

Since f ∗i,i−1(Zi−1) = Zi + Ei, again the projection formula gives

(Ei, Ci) = −E3
i .

The relations above gives the existence of a positive constant s0 independent on k such that

F 3
α,k = α3k2H3 − αk2/3r0k −

∑k
i=1 E

3
i − 3

∑k
i=1

∑k
j=i+1(Ei, E

2
j )

= αk2s0 −
∑k

i=1 E
3
i (1 + 3(k − (i+ 1)).

Consequently F 3
α,k > 0 for a sufficiently big α, as soon as we prove that there is a constant

R independent of k such that, for every i we have that |E3
i | ≤ R.

Let Ni be the restriction of the normal sheaf of Zi to Ci. Since Ci is the intersection of Ei
and Zi, we obtain that

−E3
i = deg(Ni−1(Ei−1)|Ci−1

).
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Again, by projection formula we get

−E3
i = (Ni−2, Ci−2).

Thus, using the fact that −E3
j = (Ej, Cj), by induction we get

−E3
i − E3

i−2 − E3
i−3 − · · · − E3

1 = −a,
−E3

i−1 − E3
i−3 − · · · − E3

1 = −a,
. . .

−E3
3 − E3

1 = −a,
−E3

2 = −a,
−E3

1 = −b.

From this we get the recursive formula

E3
i = E3

i−1 − E3
i−2,

−E3
2 = −a,

−E3
1 = −b.

Consequently the E3
i are periodic thus F 3

α,k > 0 for α� 0 independent of k. �

The second step is:

Lemma 7.5. Suppose that D is a generic global section of (a power of) H. Let Dk be the
strict transform of D in Xk. Then, the restriction of Fα,k to Dk is nef and big.

Proof. Let FD be the restriction of the foliation F to D. Let p1, . . . pr be the intersection
points of D with C. They are singular points for the foliation FD. Let ZD be the inter-
section of Z with D. It is a leaf of the foliation FD. We may perform a tower of blow ups
(Dk, (ED)k, pk, (ZD)k) of D on the points pj similar to the tower we performed on X. Since D
is transverse to the curve C, the strict transform of D in Xk is exactly Dk and the intersection
of Ek with Dk is (ED)k. Since Seidenberg’s desingularization process is obtained by blow up,
as soon as k is sufficently big, we may suppose that the restriction of the foliation to Dk is
with reduced singularities on the points pk.

The restriction of Fα,k to Dk is then nef and big as soon as α is sufficiently big by Theorem
7.1. �

The third step is:

Lemma 7.6. In the situation above, there exists a constant Ak (depending on k) such that,
for n� 0 we have h2(Xk;F

⊗n
α,k ) ≤ Ak.
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Proof. In order to prove Lemma 7.6 we need two substeps:
– Substep 1: There exists a constant dk (depending on k) such that, for every i > 0 we have

Hdk+i −
∑k

j=1Ej is nef and big on Xk.

Proof. We begin by a general remark on blow ups: Let C be a smooth curve on a threefold
X. Let h : X1 → X be the blow up of C in X and E1 be the exceptional divisor. The
Cartier divisor E is a projective bundle or rank one over C via the projection h|E : E → C.
Denote by F1 a fibre of h. Let Y ⊂ X be an irreducible curve different from C. Let W be
the cartesian product of Y and C over X. The projection W → Y is a closed immersion and
let rY (C) be the multiplicity of W in Y . If we denote by Y1 the strict transform of Y in X1,
then

h∗(Y ) = Y1 + rY (C)F.

It is not difficult to see (by induction on k) that, for d � 0 (depending only on k) the

restriction of Hd −
∑k

j=1Ej to
∑

j(Ej)red is nef.
Let Yk be an irreducible curve in Xk not contained in the exceptional divisors. Consider

the sequence of blow ups as above Xk → Xk−1 → · · · → X0 = X. By the use of the

projection formula we see that (−
∑

j Ej;Yk) = −
∑k−1

j=0 rYj(Cj). Where Yj is the push forward

of Yk on Xj, the Cj’s are the curves which are blown up and rYj(Cj) is the number defined
above. A standard computation gives that rY0(C0) ≥ rYj(Cj) for every j. Since we may
suppose that H − E1 is ample on X1, we have that (H;Y0) ≥ rY0(C0). Thus we obtain that
((k + i)H −

∑
j Ej;Yk) ≥ (k + i)(H,Y0) −

∑
j rYj(Cj) ≥ (k + i)(H, Y0) − krY0(C0) > 0. The

conclusion of substep 1 follows. �

– Substep 2: Proof of Lemma 7.6.
We may suppose that H −KX is ample on X. The canonical line bundle of Xk is KX +∑k
j=1 Ej. If D is a sufficiently general section of H, we will denote by Dk its proper transform

on Xk. Since Fα,k is nef and big on Dk, we may suppose that there exists a constant ak
(depending on k) such that, for every n ≥ 0 and i ≥ 0 the line bundle nFα,k−KXk +(ak+ i)D
is nef and big on Dk. Similarly, we there is a constant rk such that, for n > 0 and d ≥ rkn,
the line bundle nFα,k −KXk + (ak + i)Dk is nef and big on Xk.

Consider the exact sequence

0 −→ (F−nα,k +KXk− (ak+ i−1)Dk)|D −→ L−m+KXk |ak+iDk −→ L−m+KXk |(ak+i−1)Dk −→ 0.

By Kawamata–Vieweg vanishing theorem applied toDk (notice that, by adjunction formula,
KD = (KXk + D)|D)), we obtain that there exists a constant Ak such that, for every n ≥ 0
and i ≥ 0, we have that h1((ak + i)Dk, F

−n
α,k +KXk) ≤ Ak.

Fix n > 0. We can take i ≥ ak so big that F n
α,k − KXk + iD is nef and big on X (i will

depend on n in general).
Kawamata–Viehweg vanishing theorem applied to F n

α,k−KXk + iD,the long exact sequence
of cohomology of the exact sequence

0 −→ F−nα,k +KXk − iD −→ F−nα,k −KXk −→ F−nα,k −KXk |iD −→ 0
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and Serre duality, allow to conclude. �

Finally, the fourth step is the proof of Proposition 7.3.

Proposition 7.3. The Euler characteristic χ(Fα,k) is positive because Fα,k has positive self
intersection. By 7.6, we can find a constant Ak, independent on n, such that h2(Xk, F

m
α,k) ≤ Ak

for m � 0 and i > 1. Thus, as soon as k and m are sufficiently big, we have h0(Xk, F
m
α,k) >

0. �

Remark 7.7. (a) We proved a little bit more: for α and k sufficiently big, the line bundle
α
k1/3

H − Ek is a big divisor.
(b) If one wants to avoid the Seidenberg theorem on resolution of singularities of foliations

on surfaces, one can remark that in the case of logarithmic simple singularities, we may
suppose that D intersect the curve C properly and only on smooth points, we may suppose
that the foliation FD has reduced singularities on D.

As a corollary of theorem 7.2 we obtain the following desingularization statement.

Corollary 7.8. In the situation above, consider a Zariski-dense holomorphic map f : C2 → X
and its (meromorphic) liftings fk : C2 → Xk with the associated currents [Φ](k). Then

lim
k→+∞

[Φ](k).Ek = 0.

Proof. From Theorem 7.2, we have

0 ≤ [Φ](k).Ek ≤
α

k1/3
[Φ].H,

and we let k tend to infinity. �

7.2. Degeneracy for canonical foliations. Let (X,F , E) be a foliated threefold with
canonical singularities adapted to a normal crossing divisor E. Thanks to [5] (see also [6]) we
have a list of the local formal models of these singularities:

• the logarithmic case: the model is

ω =

(
r∏
i=1

zi

)
r∑
i=1

λi
dzi
zi

;

• the resonant case: the model is

ω =

(
r∏
i=1

zpi+1
i

)(
r∑
i=1

λi
dzi
zi

+ d

(
1

zp11 . . . zprr

))
;

where r is the dimensional type of the foliation.
In this setting, we want to prove the following

Theorem 7.9.

[Φ].K−1
F ≥ 0.
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Proof. We consider X1 := P(
2∧
TX(− log(E))) ∼= P(T ∗X(log(E))) with its projection π : X1 →

X and look at the graph of the foliation X̃ ⊂ X1. Let us look at the singularities that may
appear above SingF . We concentrate on the 3-dimensional type, since for the 2-dimensional
type we recover the same properties as in dimension 2 studied in [19]. From the list above,
locally at 3-dimensional type singularities, we have

• logarithmic simple singularities given by:

z1z2z3

(
3∑
i=1

λi
dzi
zi

)
,

where λi
λj
6∈ Q<0.

• resonant simple singularities given by:

z1z2z3

(
zp11 z

p2
2 z

p3
3

3∑
i=1

λi
dzi
zi
−

3∑
i=1

pi
dzi
zi

)
,

where p1p2p3 6= 0.
• resonant saddle-node simple singularities given by

z1z2z3

(
zp11 z

p2
2

3∑
i=1

λi
dzi
zi
−

2∑
i=1

pi
dzi
zi

)
,

where λ3p1p2 6= 0.
• logarithmic saddle-node simple singularities given by

z1z2z3

(
zp11

3∑
i=1

λi
dzi
zi
− p1

dz1

z1

)
,

where p1 6= 0, λ2λ3 6= 0.

As the foliation is adapted to E we can suppose that z1, z2 correspond to algebraic compo-
nents of E. We see that in the case of logarithmic simple singularities and resonant simple

singularities X̃ is smooth above SingF .

In the case of logarithmic saddle-node simple singularities, we see that X̃ is singular above
the z2- axis: it is the blow-up in the non-reduced ideal (zp11 , z3). So if we blow-upX successively
p1 times along the curves corresponding to the strict transforms of the z2- axis, we get a

resolution X1 → X̃ of X̃.
In the case of resonant saddle-node simple singularities, we see that X̃ is singular above the

curve which is the union of the z2- axis and the z1- axis: it is the blow-up in the non-reduced
ideal (zp11 z

p2
2 , z3). So if we blow-up X successively p1 times along the curves corresponding to

the strict transforms of the z2- axis and p2 times along the curves corresponding to the strict

transforms of the z1- axis, we get a resolution X1 → X̃ of X̃.
One notes that the resolution just described depends only on the formal model of the

foliation.
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We have
OX1(−1)|X̃ = π∗K−1

F ⊗ O(E0),

where E0 is the total exceptional divisor, above the intersection of the analytic leaf with E,

on X̃ seen as a blow up along (possibly non-reduced) curves as we have seen.
So, the logarithmic tautological inequality and lemma 4.4 imply

[Φ].K−1
F ≥ −[Φ1].E0.

The discussion above gives a procedure to obtain a resolution X1 of X̃ by blowing up X
successively along curves. Moreover, [Φ1].E0 ≤

∑
[Φk].Ek where the Ek are the exceptional

divisors coming from the successive blow-ups defining X1.
On X1 we get a foliation F 1 and again

[Φ](1).K−1
F1 ≥ −[Φ1](1).E1.

We obtain by the same argument a resolution X2 of the graph of F 1 and by induction we
get Xn, F n and

[Φ](n).K−1
Fn ≥ −[Φ1](n).En.

But since we blow-up only canonical singularities, we have

[Φ](n).K−1
Fn ≤ [Φ].K−1

F .

From the above remark and the fact that at each step the number of blow-ups is the same,
we can use corollary 7.8 to obtain

lim
n→+∞

[Φ1](n).En = 0,

which finishes the proof.
�

As above, the last result implies the algebraic degeneracy of any holomorphic map f : C2 →
X tangent to a holomorphic foliation F with canonical singularities and big canonical line
bundle KF .

To finish the proof of Theorem F, we can use the result of Jouanolou [14] on algebraic
leaves: either there are finitely many such leaves, and we are done, or they are fibers of a
fibration. In this situation, the generic fiber is an algebraic variety of general type since its
canonical bundle coincides with KF . Finally, by the classical result of [15], such a fiber cannot
be dominated by a map from C2. This concludes the proof. �
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