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ABSTRACT. We show that for every generic smooth projective hypersurfaceX ⊂ Pn+1,
n > 2, there exists a proper algebraic subvarietyY $ X such that every nonconstant
entire holomorphic curvef : C → X has imagef(C) which lies inY , provideddeg X >

2n5

.
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1. INTRODUCTION

In 1979, Green and Griffiths [8] conjectured that every projective algebraic varietyX
of general type contains a certainproper algebraicsubvariety Y $ X inside which all
nonconstant entire holomorphic curvesf : C→ X must necessarily lie.

A positive answer to this conjecture has been given for surfaces by McQuillan [11]
under the assumption that the second Segre numberc2

1 − c2 is positive. In the survey
article [21] (cf. also [20]), Siu established that there exists a high integerdn such that
generic hypersurfacesX ⊂ Pn+1 of degree> dn are moreoverKobayashi-hyperbolic,
namely all entire curvesf : C→ X must beconstant, not only algebraically degenerate.

Siu’s strategy is based on two key steps: 1) the explicit construction, in projective coor-
dinates, of global holomorphic jet differentials; 2) the deformation of such jet differentials
by means of slanted vector fields having low pole order. The explicit construction of jet
differentials can be seen as a replacement of the argument using Riemann-Roch which is
known to be difficult to realize since it involves a control ofthe cohomology. The rea-
son to perform explicit constructions is also a better access to the base-point set, and this
provides hyperbolicity instead of just algebraic degeneracy. Complete up-to-date survey
considerations may further be found in [22, 4, 12, 5, 10, 25].

In this paper, we overcome the difficulty of the Riemann-Rochargument thanks to
an alternative approach for Siu’s first key step based on Demailly’s bundle of invariant
jets [4]. The advantage of this method is that it usually yields better bounds on the degree.
Indeed, after performing in Sections 4 and 5 below some explicit, delicate elimination
computations, we finally obtain a lower bound on the degreedn = d(n) as an explicit
function ofn, for generic projective hypersurfaces of arbitrary dimension n > 2.

Theorem 1.1. Let X ⊂ Pn+1 be a generic smooth projective hypersurface of arbitrary
dimensionn > 2. If the degree ofX satisfies theeffectivelower bound:

deg(X) > 2n5
,
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then there exists aproperalgebraic subvarietyY $ X such that every nonconstant entire
holomorphic curvef : C→ X has imagef(C) contained inY .

As in [20, 21], we thereby confirm, for generic projective hypersurfaces of high degree,
the Green-Griffiths-Lang conjecture. Even if our lower bound is far from the onedeg X >

n + 3 insuring general type, to our knowledge, Theorem 1.1 is, in this direction, the first
n-dimensional result with, moreover, an explicit degree lower bound.

Two main ingredients enter our proof: 1) the existence of invariant jet differentials
vanishing on an ample divisor in projective hypersurfaces of high degree, following [4, 6];
and Siu’s second key step: 2) the global generation of a sufficiently high twisting of the
tangent bundle to the so-calledmanifold of verticaln-jets, which is canonically associated
to the universal family of projective hypersurfaces, following [21, 13].

The first ingredient dates back to the seminal work of Bloch [1], revisited by Green-
Griffiths in [8], by Siu in [19, 22, 21] and by Demailly in [4]. Bloch’s main philosophical
idea is that global jet differentials vanishing on an ample divisor provide some algebraic
differential equations that every entire holomorphic curve f : C→ X should satisfy. Five
decades later, Green and Griffiths [8] modernized Bloch’s concepts and established several
results — still fundamental nowadays — about the geometry ofentire curves.

Later on, Demailly [4] refined and enlarged the whole theory by defining jet differen-
tials that are invariant under reparametrization of the sourceC. Through this geometrically
adequate, new point of view, one looks only at the conformal class of all entire curves.
In [6, 7], the first-named author combined Demailly’s approach with Trapani’s [23] alge-
braic version of the holomorphic Morse inequalities, so as to construct global invariant jet
differentials inany dimensionn > 2. The first effective aspect of our proof is to make
somewhat explicit such a construction.

Indeed, by following [6, 7], we consider a certain intersection product (see(10) and (13)
below), the positivity of which yields — thanks to a suitableapplication of the holomor-
phic Morse inequalities — a lower bound for the (asymptotic)dimension of the space
of global sections of a certainweighted subbundleof Demailly’s full bundleEn,mT ∗

X of
invariant n-jet differentials. This intersection product lives in thecohomology algebra
of the n-th projectivized jet bundle overX, a polynomial algebra inn indeterminates
u1, u2, . . . , un equipped with canonical, geometrically significant relations ([4, 6]). The
ui here are the first Chern classes of the successive (anti)tautological line bundles which
arise during the projectivization process. The task of reducing the mentioned intersection
product in terms of the Chern classes ofTX — after eliminatingall the Chern classes
living at each level of Demailly’s tower — happens to be of high algebraic complexity,
because four combinatorics are intertwined there: 1) presence of several relations shared
by all the Chern classes of the lifted horizontal distributions; 2) Newton expansion of
largen2-powers; 3) differences of various binomial coefficients; 4) emergence of many
Jacobi-Trudy determinants.

The second ingredient,viz. the vertical jets, comes from ideas developed for 1-jets
by Voisin [24] in order to generalize works of Clemens [3] andEin on the positivity of
the canonical bundles of subvarieties of generic projective hypersurfaces of high degree.
In [21], Siu showed how the correspondingglobal generation propertyfor 1-jets devised
by Clemens generalizes to the bundle of tangents to the spaceof vertical n-jets. Siu
then established that one may use the available tangential generators, which are mero-
morphic vector fields with a certainpole ordercn > 1, so as to produce, by plain dif-
ferentiation, many new algebraically independent invariant jet differentials when starting
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from just a singlenonzerojet differential. At the end, one obtains in this way sufficiently
many independent jet differentials, and this then forces entire curves to lie in a positive-
codimensional subvarietyY $ X.

This strategy was realized in details for 2-jets in dimension 2 by P̆aun [15] with pole
orderc2 = 7, and similarly, for 3-jets in dimension 3 by the third-namedauthor in [18]
with c3 = 12. In both works, global generation holds outside a certain exceptional set.
The general case ofn-jets in dimensionn was performed recently by the second-named
author in [13] withcn = n2+5n

2 and with a quite similar exceptional set. It then became
clear, when [13] appeared, that Demailly’s invariant jets combined with Siu’s second key
step could yieldweakalgebraic degeneracy (nonexistence of Zariski-dense entire curves)
in any dimensionn > 2. But to reach effectivity, it yet remained to perform what the
present article is aimed at: taming somehow the complicatedcombinatorics of Demailly’s
tower. Furthermore, at the cost of increasing the pole orderup to c′n = n2 + 2n, the
exceptional set is shrunk to be just the set of singular jets ([13]), and thenstrong effective
algebraic degeneracy is gained. This is Theorem 1.1.

As the effective lower bounddeg X > 2n5
of the main theorem above is not optimal,

Section 6 of the paper is intended to provide numerically better estimates in small dimen-
sions. For surfaces, the best known effective lower bound for the degree isd > 18 ([15]),
after d > 21 ([5]) andd > 36 ([12]). In [18], the third-named author obtained the first
effective result for weak algebraic degeneracy of entire curves inside threefoldsX of P4,
wheneverdeg X > 593.

Theorem 1.2. Let X ⊂ Pn+1 be a generic smooth projective hypersurface. Then there
exists a proper closed subvarietyY $ X such that every nonconstant entire holomorphic
curvef : C→ X has imagef(C) contained inY

• for dim X = 3, wheneverdeg X > 593;
• for dim X = 4, wheneverdeg X > 3203;
• for dim X = 5, wheneverdeg X > 35355;
• for dim X = 6, wheneverdeg X > 172925.

The last three effective lower bounds in dimensions 4, 5 and 6are entirely new. In
dimension3, our bound 593 is the same as in [18]. Indeed, an inspection ofthe exceptional
set in [18] shows that the part of the degeneracy locus which may depend onf is in
fact of codimension 2 (cf. [13]), and therefore is empty, thanks to Clemens’ result [3]
which excludes elliptic and rational curves. Usingc4 = 18 and c5 = 25 instead of
c′4 = 24 andc′5 = 35, we would have obtained the two lower boundsdeg X > 2432
anddeg X > 25586 which were announced in our firstarxiv.org preprint and which
insured onlyweakalgebraic degeneracy (cf. [13]; usingc6 = 33 instead ofc′6 = 48, the
bound would bedeg X > 120176).

For dimensions 5 and 6, our strategy of proof is the same as forTheorem 1.1, except
that we choose a numerically better weighted subbundle of Demailly’s bundle of invariant
jet differentials, exactly as in [6].

Quite differently, for dimensions3 and4, the construction of nonzero jet differentials is
based on acompletealgebraic description of the full Demailly bundlesEn,mT ∗

X , n = 3, 4,
due respectively to the third-named author ([16]) and to thesecond-named author ([14]),
after Demailly [4] and Demailly-El Goul [5] forn = 2. The invariant theory approach
requires finding the composition series of theEn,mT ∗

X , but this is understood only in di-
mensions 2, 3 and 4, because of the proliferation of secondary invariants — a well known
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phenomenon,cf. [14] and the references therein. Then by appropriately summing the Eu-
ler characteristics of the composing Schur bundles [16], taking account of the numerous
syzygies shared by a collection of fundamental bi-invariants [14], one establishes the pos-
itivity of the Euler characteristicsχ

(
En,mT ∗

X

)
for n = 3, 4, at least asymptotically asm

goes to infinity. Furthermore, realizing also in dimension 4the strategy finalized in dimen-
sion 3 by the third-named author [17], we estimate from abovethe contribution of the even
cohomology dimensionsh2i

(
X,En,mT ∗

X

)
, thereby gaining a suitable lower bound for the

dimension of the spaceh0
(
X,En,mT ∗

X

)
of global sections. Such estimates are done by

means of Demailly’s [4] generalization of Bogomolov’s vanishing theorem [2] for the top
cohomology, and also by means of the algebraic version of theweak holomorphic Morse
inequalities for the intermediate cohomologies [17].

Even if the numerical bounds obtained in this way in dimensions 3 and 4 are better
than the ones we obtained in all dimensions, the extreme intricacy of the algebras of
invariants by reparametrization (cf. [14]) is the main obstacle to run the process in the
higher dimensionsn > 5. This was our central motivation to follow the strategy of [6, 7].

Acknowledgments. The first-named author warmly thanks Stefano Trapani for patiently
listening all the details of the proof of the main theorem.

2. PRELIMINARIES

2.1. Jet differentials. We briefly present here useful geometric concepts selected from
the theory of Green-Griffiths’ and Demailly’s jets [8, 4] (cf. also [16, 6]). Let(X,V )
be adirected manifold, i.e. a pair consisting of a complex manifoldX together with a
(not necessarily integrable) holomorphic subbundleV ⊂ TX of the tangent bundle toX.
This category will be very useful later on, when we will consider the situation whereX is
the universal family of projective hypersurfaces of fixed degree andV the relative tangent
bundle to the family. The bundleJkV is the bundle ofk-jets of germs of holomorphic
curvesf : (C, 0) → X which are tangent toV , i.e., such thatf ′(t) ∈ Vf(t) for all t near
0, together with the projection mapf 7→ f(0) ontoX.

Let Gk be the group of germs ofk-jets of biholomorphisms of(C, 0), that is, the group
of germs of biholomorphic maps

t 7→ ϕ(t) = a1 t + a2 t2 + · · ·+ ak tk, a1 ∈ C∗, aj ∈ C, j > 2

of (C, 0), the composition law being taken modulo termstj of degreej > k. ThenGk

admits a natural fiberwise right action onJkV which consists in reparametrizingk-jets of
curves by such changesϕ of parameters. In [13], one finds the multivariate Faà di Bruno
formulas yielding explicit reparametrization for the so-called absolute caseV = TX .
Moreover the subgroupH ≃ C∗ of homothetiesϕ(t) = λ t is a (non-normal) subgroup
of Gk and we have a semidirect decompositionGk = G′

k ⋉ H, whereG′
k is the group of

k-jets of biholomorphisms tangent to the identity,i.e. with a1 = 1. The corresponding
action onk-jets is described in coordinates by

(1) λ ·
(
f ′, f ′′, . . . , f (k)

)
=

(
λf ′, λ2f ′′, . . . , λkf (k)

)
.

As in [8], we introduce theGreen-Griffiths vector bundleEGG
k,mV ∗ → X, the fibers of

which are complex-valued polynomialsQ(f ′, f ′′, . . . , f (k)) in the fibers ofJkV having
weighted degreem with respect to theC∗ action, namely such that:

Q
(
λf ′, λ2f ′′, . . . , λkf (k)

)
= λmQ

(
f ′, f ′′, . . . , f (k)

)
,
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for all λ ∈ C∗ and all
(
f ′, f ′′, . . . , f (k)

)
∈ JkV . Demailly extended this concept.

Definition 2.1 ([4]). The bundle of invariant jet differentials of orderk and weighted
degreem is the subbundleEk,mV ∗ ⊂ EGG

k,mV ∗ of polynomial differential operators

Q(f ′, f ′′, . . . , f (k)) which are invariant underarbitrary changes of parametrization,i.e.
which, for everyϕ ∈ Gk, satisfy:

Q
(
(f ◦ ϕ)′, (f ◦ ϕ)′′, . . . , (f ◦ ϕ)(k)

)
= ϕ′(0)m Q

(
f ′, f ′′, . . . , f (k)

)
.

Alternatively,Ek,mV ∗ =
(
EGG

k,mV ∗
)G′

k is the set of invariants ofEGG
k,mV ∗ under the action

of G′
k.

We now define a filtration onEGG
k,mV ∗. A coordinate changef 7→ Ψ ◦ f transforms

every monomial(f (•))ℓ = (f ′)ℓ1(f ′′)ℓ2 · · · (f (k))ℓk having, for anys with 1 6 s 6 k,
the partial weighted degrees|ℓ|s := |ℓ1| + 2|ℓ2| + · · · + s|ℓs|, into a new polynomial(
(Ψ ◦ f)(•)

)ℓ
in (f ′, f ′′, . . . , f (k)), which has the same partial weighted degree of orders

whenℓs+1 = · · · = ℓk = 0, and a larger or equal partial degree of orders otherwise (use
the chain rule). Hence, for eachs = 1, . . . , k, we get a well defined decreasing filtration
F •

s onEGG
k,mV ∗ as follows:

F p
s

(
EGG

k,mV ∗
)

=

{
Q(f ′, f ′′, . . . , f (k)) ∈ EGG

k,mV ∗ involving
only monomials(f (•))ℓ with |ℓ|s > p

}
, ∀ p ∈ N.

The graded termsGrpk−1

(
EGG

k,mV ∗
)

associated with the(k − 1)-filtration F p
k−1(E

GG
k,mV ∗)

are the homogeneous polynomialsQ(f ′, f ′′, . . . , f (k)) all the monomials(f (•))ℓ of which
have partial weighted degree|ℓ|k−1 = p; hence, their degreeℓk in f (k) is such thatm−p =
kℓk andGrp

k−1(E
GG
k,mV ∗) = 0 unlessk|m − p. Looking at the transition automorphisms

of the graded bundle induced by the coordinate changef 7→ Ψ ◦ f , it turns out thatf (k)

transforms as an element ofV ⊂ TX and, by means of a simple computation, one finds

Grm−kℓk

k−1

(
EGG

k,mV ∗
)

= EGG
k−1,m−kℓk

V ∗ ⊗ SℓkV ∗.

Combining all filtrationsF •
s together, we find inductively a filtrationF • on EGG

k,mV ∗ the
graded terms of which are

Grℓ
(
EGG

k,mV ∗
)

= Sℓ1V ∗ ⊗ Sℓ2V ∗ ⊗ · · · ⊗ SℓkV ∗, ℓ ∈ Nk, |ℓ|k = m.

Moreover ([4]), invariant jet differentials enjoy the natural induced filtrations:

F p
s (Ek,mV ∗) = Ek,mV ∗ ∩ F p

s

(
EGG

k,mV ∗
)
,

the graded terms of which are, if we employ(•)G′
k to denoteG′

k-invariance:

Gr•(Ek,mV ∗) =

( ⊕

|ℓ|k=m

Sℓ1V ∗ ⊗ Sℓ2V ∗ ⊗ · · · ⊗ SℓkV ∗

)G′
k

.

2.2. Projectivized k-jet bundles. Next, we recall briefly Demailly’s construction [4]
of the tower of projectivized bundles providing a (relative) smooth compactification of
J

reg
k V/Gk, whereJ

reg
k V is the bundle ofregulark-jets tangent toV , that is,k-jets such

thatf ′(0) 6= 0.
Let (X,V ) be a directed manifold, withdim X = n and rankV = r. With (X,V ), we

associate another directed manifold(X̃, Ṽ ) whereX̃ = P (V ) is the projectivized bundle
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of lines ofV , π : X̃ → X is the natural projection and̃V is the subbundle ofT eX defined
fiberwise as

Ṽ(x0,[v0])
def
=

{
ξ ∈ T eX,(x0,[v0])

| π∗ξ ∈ C · v0

}
,

for anyx0 ∈ X andv0 ∈ TX,x0 \ {0}. We also have a “lifting” operator which assigns to
a germ of holomorphic curvef : (C, 0) → X tangent toV a germ of holomorphic curve
f̃ : (C, 0)→ X̃ tangent toṼ in such a way that̃f(t) = (f(t), [f ′(t)]).

To construct the projectivizedk-jet bundle we simply set inductively(X0, V0) =

(X,V ) and(Xk, Vk) = (X̃k−1, Ṽk−1). Clearly rankVk = r anddim Xk = n + k(r− 1).
Of course, we have for eachk > 0 a tautological line bundleOXk

(−1) → Xk and a
natural projectionπk : Xk → Xk−1. We call πj,k the composition of the projections
πj+1 ◦ · · · ◦ πk, so that the total projection is given byπ0,k : Xk → X. We have, for each
k > 0, two short exact sequences

(2) 0→ TXk/Xk−1
→ Vk → OXk

(−1)→ 0,

(3) 0→ OXk
→ π∗

kVk−1 ⊗ OXk
(1)→ TXk/Xk−1

→ 0.

Here, we also have an inductively definedk-lifting for germs of holomorphic curves such
thatf[k] : (C, 0)→ Xk is obtained asf[k] = f̃[k−1].

Theorem 2.1([4]). Suppose thatrankV > 2. The quotientJ reg
k V

/
Gk has the structure of

a locally trivial bundle overX, and there is a holomorphic embeddingJ reg
k V

/
Gk →֒ Xk

overX, which identifiesJ reg
k V

/
Gk with X

reg
k , that is the set of points inXk on the form

f[k](0) for some non singulark-jet f . In other wordXk is a relative compactification of
J

reg
k V/Gk overX. Moreover, one has the direct image formula:

(π0,k)∗OXk
(m) = O

(
Ek,mV ∗

)
.

Next, we are in position to recall the fundamental application of jet differentials to
Kobayashi-hyperbolicity and to Green-Griffiths algebraicdegeneracy.

Theorem 2.2([8, 22, 4]). Assume that there exist integersk,m > 0 and an ample line
bundleA→ X such that

H0
(
Xk,OXk

(m)⊗ π∗
0,kA

−1
)
≃ H0

(
X,Ek,mV ∗ ⊗A−1

)

has non zero sectionsσ1, . . . , σN and letZ ⊂ Xk be the base locus of these sections. Then
every entire holomorphic curvef : C→ X tangent toV necessarily satisfiesf[k](C) ⊂ Z.
In other words, for every globalGk-invariant differential equationP vanishing on an
ample divisor, every entire holomorphic curvef must satisfy the algebraic differential
equationP

(
jkf(t)

)
≡ 0. Furthermore, the same result also holds true for the bundle

EGG
k,mT ∗

X .

2.3. Existence of invariant jet differentials. Now, we recall some results obtained by
the first-named author in [7], concerning the existence of invariant jet differentials on
projective hypersurfaces which generalized to all dimensions n previous works by De-
mailly [4] and of the third-named author [17].

Denote byc•(E) the total Chern class of a vector bundleE. The two short exact
sequences (2) and (3) give, for eachk > 0, the following two formulas:

c•(Vk) = c•
(
TXk/Xk−1

)
c•

(
OXk

(−1)
)

c•
(
π∗

kVk−1 ⊗OXk
(1)

)
= c•

(
TXk/Xk−1

)
,
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so that by a plain substitution:

(4) c•(Vk) = c•
(
OXk

(−1)
)
c•

(
π∗

kVk−1 ⊗ OXk
(1)

)
.

Let us calluj = c1

(
OXj

(1)
)

andc
[j]
l = cl(Vj). With these notations, (4) becomes:

(5) c
[k]
l =

l∑

s=0

[(n−s
l−s

)
−

( n−s
l−s−1

)]
ul−s

k · π∗
kc

[k−1]
s , 1 6 l 6 r.

SinceXj is the projectivized bundle of line ofVj−1, we also have the polynomial relations

(6) ur
j + π∗

j c
[j−1]
1 · ur−1

j + · · ·+ π∗
j c

[j−1]
r−1 · uj + π∗

j c
[j−1]
r = 0, 1 6 j 6 k.

After all, the cohomology ring ofXk is defined in terms of generators and relations as
the polynomial algebraH•(X)[u1, . . . , uk] with the relations (6) in which, using induc-

tively (5), one may express in advance all thec
[j]
l as certain polynomials with integral

coefficients in the variablesu1, . . . , uj andc1(V ), . . . , cl(V ). In particular, for the first
Chern class ofVk, a simple explicit formula is available:

(7) c
[k]
1 = π∗

0,kc1(V ) + (r − 1)

k∑

s=1

π∗
s,k us.

Also, it is classically known that the Chern classescj(X) of a smooth projective hy-
persurfaceX ⊂ Pn+1 are polynomials ind := deg X and the hyperplane classh :=
c1

(
OPn+1(1)

)
, viz. for 1 6 j 6 n:

(8) cj(X) = cj(TX) = (−1)j hj
j∑

i=0

(−1)i
(n+2

i

)
dj−i.

Now, let X ⊂ Pn+1 be a smooth projective hypersurface of degreedeg X = d
and consider, for all what follows in the sequel, the absolute caseV = TX . For
a = (a1, . . . , ak) ∈ Zk, we define (cf. [4, 6]) the following line bundleOXk

(a) onXk:

OXk
(a) = π∗

1,kOX1(a1)⊗ π∗
2,kOX2(a2)⊗ · · · ⊗ OXk

(ak).

Using the algebraic version — first appeared in Trapani’s article [23] — of Demailly’s
holomorphic Morse inequalities, the first-named author showed in [7] that in order
to check thebignessof OXn(1), it suffices to show thepositivity, for somea =
(a1, . . . , an) ∈ Nn lying arbitrarily in the cone defined by:

(9) a1 > 3a2, . . . , ak−2 > 3ak−1 and ak−1 > 2ak > 1,

of the following intersection product:

(10)

(
OXn(a)⊗ π∗

0,nOX(2|a|)
)n2

−

− n2
(
OXn(a)⊗ π∗

0,nOX(2|a|)
)n2−1

· π∗
0,nOX(2|a|),

where|a| = a1 + · · · + an and whereOX(1) is the hyperplane bundle overX. We recall
passimthat this intersection product is derived from the following expression ofOXn(a)
as the “difference” of two line bundles overXn:

OXn(a) =
(
OXn(a)⊗ π∗

0,nOX(2|a|)
)
⊗

(
π∗

0,nOX(2|a|)
)−1

,

that are shown in [6] to be both globally nef. Here is the precise statement.
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Theorem 2.3([7]). LetX ⊂ Pn+1 by a smooth complex hypersurface of degreedeg X =
d and fix any ample line bundleA→ X. Then, for jet orderk = n equal to the dimension,
there exists a positive integerdn such that the two isomorphic spaces of sections:

H0
(
Xn,OXn(m)⊗ π∗

0,nA−1
)
≃ H0

(
X,En,mT ∗

X ⊗A−1
)
6= 0,

arenonzero, wheneverd > dn provided thatm > md,n is large enough.

It is also proved in [6] that for any jet orderk < n smaller than the dimension, no
nonzero sections, though, are available:H0

(
Xk, OXk

(m) ⊗ π∗
0,kA

−1
)

= 0; in fact, this
vanishing property is technically used in the proof of the theorem.

In our applications, it will be crucial to be able to control in a more precise way the
order of vanishing of these differential operators along the ample divisor. Thus, we shall
need here a slightly different theorem, inspired from [21, 15, 18]. Recall at first that for
X a smooth projective hypersurface of degreed in Pn+1, the canonical bundle has the
following expression in terms of the hyperplane bundle:

KX ≃ OX(d− n− 2),

whence it is ample as soon asd > n + 3. Here is the new useful result.

Theorem 2.4. Let X ⊂ Pn+1 by a smooth complex hypersurface of degreedeg X = d.
Then, for all positive rational numbersδ small enough, there exists a positive integerdn

such that the space of twisted jet differentials:

H0
(
Xn,OXn(m)⊗ π∗

0,nK−δm
X

)
≃ H0

(
X,En,mT ∗

X ⊗K−δm
X

)
6= 0,

is nonzero, wheneverd > dn,δ provided again thatm > md,n,δ is large enough and that
δm is an integer.

Observe that all nonzero sectionsσ ∈ H0
(
X,En,mT ∗

X ⊗K−δm
X ) then have vanishing

order at least equal toδm(d − n− 2), when viewed as sections ofEn,mT ∗
X .

Proof of Theorem 2.4.Similarly as in [7], for each weighta ∈ Nn satisfying (9), we first
of all expressOXn(a)⊗ π∗

0,nK
−δ|a|
X as the following difference of two nef line bundles:

(
OXn(a)⊗ π∗

0,nOX(2|a|)
)
⊗

(
π∗

0,nOX(2|a|) ⊗ π∗
0,nK

δ|a|
X

)−1
.

In order to apply the holomorphic Morse inequalities, we arethus led to evaluate the
following intersection product:

(11)

(
OXn(a)⊗ π∗

0,nOX(2|a|)
)n2

−

− n2
(
OXn(a)⊗ π∗

0,nOX(2|a|)
)n2−1

·
(
π∗

0,nOX(2|a|) ⊗ π∗
0,nK

δ|a|
X

)
,

and to decide when it is positive. After reducing it in terms of the Chern classes ofX,
and then in terms ofd = deg X using (8), this intersection product becomes a polyno-
mial — difficult to compute explicitly, but effective aspects will start in Section 4 — ind
of degree less than or equal ton + 1, having coefficients which are polynomials in(a, δ)
of bidegree(n2, 1), homogeneous ina. Notice that forδ = 0, the intersection product
identifies with (10); according to the proof of Theorem 2.3 given in [7], we already know
that for a certain (noneffective) choice of weighta lying in the cone (9), the polynomial
corresponding to (10) has degree precisely equal ton + 1 with a positiveleading coeffi-
cient. Thus by continuity, with the same choice of weight, for all δ > 0 small enough, the
leading coefficient still remains positive. So the polynomial in question again takes only
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positive values whend > dn, for some (noneffective)dn. Holomorphic Morse inequalities
then insure the claimed existence of nonzero sections, exactly as in [7]. �

2.4. Global generation of the tangent bundle to the variety of vertical jets. We now
briefly present the second ingredient, as said in the Introduction. LetX ⊂ Pn+1 × PNn

d

be the universal family of projectiven-dimensional hypersurfaces of degreed in Pn+1;
its parameter space is the projectivizationP

(
H0(Pn+1,O(d))

)
= PNn

d , whereNn
d =(n+d+1

d

)
− 1. We have two canonical projections:

X
pr1

}}zz
zz

zz
zz pr2

!!
DD

DD
DD

DD

Pn+1 PNn
d .

Consider the relative tangent bundleV ⊂ TX with respect to the second projectionV :=
ker( pr2)∗, and form the corresponding directed manifold(X,V). It is clear thatV is
integrable and that any entire holomorphic curve fromC to X tangent toV has its image
entirely contained in some fiber pr−1

2 (s) = Xs, s ∈ PNn
d .

Now, let p : JnV → X be the bundle ofn-jets of germs of holomorphic curves inX
tangent toV, the so-calledvertical jets, and consider the subbundleJ reg

n V of regularn-
jetsof mapsf : (C, 0)→ X tangent toV such thatf ′(0) 6= 0.

Theorem 2.5([13]). The twisted tangent bundle to verticaln-jets:

TJnV⊗ p∗pr∗1 OPn+1(n2 + 2n)⊗ p∗pr∗2 O
P

Nn
d
(1)

is generated overJ reg
n V by its global holomorphic sections. Moreover, one may choose

such global generating vector fields to be invariant with respect to the reparametrization
action ofGn onJnV.

This means that we have enough independent, global, invariant vector fields having
meromorphiccoefficients overJnV in order to linearly generate the tangent spaceTJnV,jn

at every arbitrary fixed regular jetjn ∈ J
reg
n V. The poles of these vector fields occur only

in the base variables ofX, but not in the vertical jet variables of positive differentiation or-
der.Most importantly, the maximal pole order here is6 n2 +2n, hence it is compensated
by the first twisting(•) ⊗ p∗pr∗1 OPn+1(n2 + 2n).

3. ALGEBRAIC DEGENERACY OF ENTIRE CURVES

Now, we are fully in position to establish thenoneffectiveversion of Theorem 1.1. The
proof (cf. the Introduction) incorporates two main ingredients: 1) the existence, already
established by Theorem 2.4, of at leastonenonzero global invariant jet differential van-
ishing on an ample divisor; 2) Theorem 2.5 just above to produce sufficiently manynew
algebraically independentjet differentials.

Theorem 3.1. LetX ⊂ Pn+1 be a smooth projective hypersurface of arbitrary dimension
n > 2. Then there exists a positive integerdn such that wheneverdeg X > dn andX is
generic, there exists aproperalgebraic subvarietyY $ X such that every nonconstant
entire holomorphic curvef : C→ X has imagef(C) contained inY .

Proof. As above, consider the universal projective hypersurfacePn+1 pr1←− X
pr2−→ PNn

d

of degreed in Pn+1. Observe thatXs = pr−1
2 (s) is a smooth projective hypersurface of
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Pn+1 for generics ∈ PNn
d and thatV = ker(pr2)∗ restricted toXs coincides with the

tangent bundle toXs. We infer therefore that:

H0
(
Xs, En,mV∗ ⊗ pr∗1OPn+1

(
− δm(d− n− 2)

)∣∣
Xs

)
≃ H0

(
Xs, En,mT ∗

Xs
⊗K−δm

Xs

)
.

Thanks to Theorem 2.4, the latter space of sections is nonzero, for small rationalδ > 0,
for d > dn,δ and form > md,n,δ large enough, independently ofs. Fix anys0 ∈ PNn

d and
pick a nonzero jet differentialP0 ∈ H0

(
Xs0 , En,mT ∗

Xs0
⊗ K−δm

Xs0

)
. In order to employ

the vector fields of Theorem 2.5, we must at first extendP0 as aholomorphic familyof
nonzero jet differentials. Thus, we invoke the following classical extension result.

Theorem 3.2 ([9], p. 288). Let τ : Y → S be a flat holomorphic family of compact
complex spaces and letL → Y be a holomorphic vector bundle. Then there ex-
ists a proper subvarietyZ ⊂ S such that for eachs0 ∈ S \ Z, the restriction map
H0

(
τ−1(Us0),L

)
→ H0

(
τ−1(s0),L|τ−1(s0)

)
is onto, for some Zariski-dense open set

Us0 ⊂ S containings0.

We apply this statement toτ = pr2, to Y = X, to S = PNn
d , to L = En,mV∗ ⊗

pr∗1OPn+1

(
− δm(d − n − 2)

)
and we similarly denote byZ ⊂ PNn

d the embarrassing
proper algebraic subvariety. The genericity ofX assumed in the two theorems 1.1 and 3.1
will just consist in requiring thats0 6∈ Z (noticepassimthat we do not have a constructive
access toZ) and of course also, thats does not belong to the set for whichXs is singular.

We therefore obtain a holomorphic family of jet differentials:

P =
{
P |s ∈ H0

(
Xs, En,mT ∗

Xs
⊗K−δm

Xs

)}

parametrized bys with P |s0 = P0 6≡ 0 and vanishing onKδm
Xs

; for our purposes, it will
suffice thats varies in some neighborhood ofs0.

Now, take anonconstantentire holomorphic curvef : C → X tangent toV. Since the
distributionV has integral manifolds pr−1

2 (s) = Xs, f mapsC into someXs0 , for some
s0 ∈ PNn

d . Of course, we assume thats0 6∈ Z and thatXs0 is non-singular. Consider now
the zero-set locus

Ys0 :=
{
x ∈ Xs0 : P |s0(x) = 0

}
,

whereP |s0 6≡ 0 vanishes as a section of the vector bundleEn,mT ∗
Xs0
⊗K−δm

Xs0
. ThenYs0

is aproper algebraic subvarietyof Xs0 . We then claim that

f(C) ⊂ Ys0,

which will complete the proof of the theorem. (It will even come out that we obtain
strong algebraic degeneracy of entire curvesf : C → Xs inside aYs $ Xs defined by
Ys =

{
x ∈ X : P |s(x) = 0

}
and parametrized bys nears0.)

Reasoning by contradiction, suppose that there existst0 ∈ C with f(t0) 6∈ Ys0. Con-
sider then-jet mapjnf : C→ JnV induced byf . If jnf(C) would be entirely contained in

J
sing

n V
def
= JnV \J

reg
n V, thenf would beconstant, since singularn-jets satisfyf ′(t) = 0.

So necessarilyjnf(C) 6⊂ JnVsing, namelyf ′ 6≡ 0. Then by shifting a bitt0 if necessary,
we can assume that we in addition havef ′(t0) 6= 0, viz. jnf(t0) ∈ J

reg
n V.

Theorem 2.2 ensures thatP |s0

(
jn f(t)

)
≡ 0. DenoteU := PNn

d \ Z.
We may now view the familyP = {P |s} as being a holomorphic map

P : JnV
∣∣
pr−1

2 (U)
−→ p∗pr∗1OPn+1

(
− δm(d− n− 2)

)∣∣
pr−1

2 (U)
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which is polynomial of weighted degreem in the jet variables. LetV be any of the global
invariant holomorphic vector fields onJnV with values inp∗pr∗1OPn+1(n2 +2n) that were
provided by Theorem 2.5. Then we observe that the Lie derivative LV P together with the
natural duality pairing

OPn+1(p)× OPn+1(−q)→ OPn+1(p − q),

provides a new holomorphic map (notice the shift byn2 + 2n):

LV P : JnV
∣∣
pr−1

2 (U)
−→ p∗pr∗1OPn+1

(
− δm(d − n− 2) + n2 + 2n

)∣∣
pr−1

2 (U)
,

again polynomial of weighted degreem in the jet variables, thus a new parameterized
family of invariant jet differentials. In particular, the restrictionLV P |s0 of LV P to {s =
s0} yields anonzeroglobal holomorphic section in

H0
(
Xs0 , En,mT ∗

Xs0
⊗K−δm

Xs0
⊗ OXs0

(n2 + 2n)
)

=

= H0
(
Xs0 , En,mT ∗

Xs0
⊗ OXs0

(−δm(d − n− 2) + n2 + 2n)
)
,

which is a global invariant jet differential onXs0 vanishing on an ample divisor provided
that−δm(d − n − 2) + n2 + 2n still remains negative; therefore, if we ensure such a
negativity (seebelow), Theorem 2.2 shows that[LV P |s0]

(
jnf(t)

)
≡ 0. As a result, the

n-jet of f now satisfiestwoglobal algebraic differential equations:

Ps0

(
jnf(t)

)
≡

[
LV P |s0

](
jnf(t)

)
≡ 0.

V

f(C)

f(t0)

fiber

JnVf(t0)

JnVf(t0)

X
?

differential
LV P

Fig. 1: Producing from P a new jet differential LV P having distinct zero locus inJnV

another jet

{P =0}

{LV P =0}

constructing

Ys0

jnf(t0)

jnf(t0)

jnf(t0)

Heuristically (cf. the figure), if the fiberJnVf(t0) would be, say, 2-dimensional, and if
the intersection of{Ps0 = 0} with {LV P |s0 = 0}, viewed in the fiberJnVf(t0), would be
a pointdistinct from the originaljnf(t0), we would get the sought contradiction. Now we
realize this idea (cf. [21, 15, 18]) by producing enough new jet differential divisors whose
intersection becomesempty.

Indeed, witht0 such thatf(t0) 6∈ Ys0 andjnf(t0) ∈ J
reg
n V, and withWi, Vj denoting

some global meromorphic vector fields in

H0
(
JnV, TJnV⊗ p∗pr∗1OPn+1(n2 + 2n)⊗ p∗pr∗2OP

Nn
d
(1)

)
,

that are supplied by Theorem 2.5, we claim that the followingtwo evidently contradictory
conditions can be satisfied, and this will achieve the proof.

(i) For everyp 6 m and for arbitrary such fieldsW1, . . . ,Wp, the restriction
LWp · · ·LW1P

∣∣
s0

yields a nonzero global holomorphic section in

H0
(
Xs0 , En,mT ∗

Xs0
⊗ OXs0

(−δm(d− n− 2) + p(n2 + 2n))
)
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with the property that
[
LWp · · ·LW1P

](
s0, jnf(t)

)
≡ 0.

(ii) there exist somep 6 m and some invariant fieldsV1, . . . , Vp such that[
LVp · · ·LV1P

](
s0, jnf(t0)

)
6= 0.

The first condition(i) will automatically be ensured by Theorem 2.2 provided the re-
sulting jet differential still vanishes on an ample divisor, i.e. provided that

−δm(d− n− 2) + p(n2 + 2n) < 0

is still negative. But sincep will be 6 m, it suffices that−δm(d−n−2)+m(n2+2n) < 0,
and then after erasingm, that:

(12) d > n2+2n
δ + n + 2.

To get(i), we first fix a rationalδ > 0 so that Theorem 2.4 gives anonzerojet differential
for anyd > dn,δ, we increase (if necessary) this lower bound by taking account of (12),
we construct the holomorphic familyP |s, and(i) holds.

To establish(ii) , we choose local coordinates:
(
s, z, z′, . . . , z(n)

)
∈ CNn

d × Cn × Cn × · · · × Cn

onJnV near
(
s0, j

nf(t0)
)
, wherez ∈ Cn provides some local coordinates onXs for any

fixed s nears0, and where
(
z′, . . . , z(n)

)
are the jet coordinates associated withz. We

also choose a local trivialization≃ C of the line bundleK−δm
Xs

. Then our holomorphic

family of jet differentialsP |s ∈ H0
(
Xs, En,mT ∗

Xs
⊗K−δm

Xs

)
writes locally as a weighted

m-homogeneous jet-polynomial:

P =
∑

|i1|+···+n|in|=m

qi1,...,in(s, z) (z′)i1 · · · (z(n))in ,

where i1, . . . , in ∈ Nn and where theqi1,...,in(s, z) are holomorphic near(s0, f(t0)).
Locally, the proper subvarietyYs0 ⊂ X is represented as the common zero-locus:

Ys0 =
{
z ∈ Xs0 : qi1,...,in(s0, z) = 0, ∀ i1, . . . , in

}
.

By our assumption thatf(t0) 6∈ Ys0 , there exist i01, . . . , i
0
n ∈ Nn such that

qi01,...,i0n

(
s0, f(t0)

)
6= 0. If we make the translational change of jet coordinates

z′ := z′ − f ′(t0), . . . ,z(n) := z(n) − f (n)(t0), our jet-polynomial transfers to:

P =
∑

|i1|+···+n|in|6m

qi1,...,in(s, z) (z ′)i1 · · · (z(n))in ,

(notice “6m”) with new coefficientsqi1,...,in(s, z) that depend linearly upon the old ones

and polynomially upon
(
f ′(t0), . . . , f

(n)(t0)
)
. Again, there existi

0
1, . . . , i

0
n ∈ Nn such

that q
i
0
1,...,i

0
n

(
s0, f(t0)

)
6= 0, because otherwise the two jet-polynomialsP

∣∣
s0,f(t0)

and

P
∣∣
s0,f(t0)

would be both identically zero.

Sincejnf(t0) ∈ J reg
n V, by the property 2.5 of generation by global sections, we get

that for everyk with 1 6 k 6 n and for everyi with 1 6 i 6 n, there exists an invariant
vector fieldV k

i with

V k
i

∣∣
(s0,j

n
f(t0))

= ∂

∂z
(k)
i

∣∣∣
(s0,j

n
f(t0))

,

where we have denoted the translated central jet byj
n
f(t0) :=

(
f(t0), 0, . . . , 0

)
.
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To achieve the proof of(ii) , we may suppose that for every integerp with p <

|i
0
1|+· · ·+|i

0
n| 6 |i

0
1|+· · ·+n |i

0
n| = m and for everyp invariant vector fieldsW1, . . . ,Wp,

one has
[
W1 · · ·Wp P

](
s0, j

n
f(t0)

)
= 0, since if any such an expression is already6= 0,

(ii) would be got gratuitously. Thanks to the global generation Theorem 2.5, this van-
ishing property then holds for any vector fieldsWi involving all the possible differentia-
tions ∂

∂s , ∂
∂z , ∂

∂z′
, . . . , ∂

∂z(n) . Then under this assumption, the remainder differentiations

present inV k
i after∂

/
∂z

(k)
i

∣∣
(s0,j

n
f(t0))

will not intervene at the point
(
s0, j

n
f(t0)

)
when

performing any multi-derivation of length equal to|i
0
1| + · · · + |i

0
n|, hence if we write

i
0
k =

(
i
0
k,1, . . . , i

0
k,n

)
∈ Nn all the multiindices present in the specific coefficientq

i
0
1,...,i

0
n
,

it follows that:
[
V n

i
0
n,n

· · · V n

i
0
n,1

· · · · · · V 1

i
0
1,n

· · · V 1

i
0
1,n

P
](

s0, j
n
f(t0)

)
=

=
[

∂

∂z
(n)

i
0
n,n

· · · ∂

∂z
(n)

i
0
n,1

· · · · · · ∂

∂z
(1)

i
0
1,n

· · · ∂

∂z
(1)

i
0
1,1

P
](

s0, f(t0), 0, . . . , 0
)

= i
0
n,n! · · · i

0
n,1! · · · · · · i

0
1,n! · · · i

0
1,1! q

i
0
1,...,i

0
n

(
s0, f(t0)

)
6= 0,

which is nonzero. Thus(ii) holds and the proof of Theorem 3.1 is complete. Theorem 3.1
being not effective regarding the conditiond > dn, the next two Sections 4 and 5 are
devoted to the proof of the effective main Theorem 1.1. �

4. EFFECTIVENESS OF THE DEGREE LOWER BOUND

It is known (cf. [19, 4, 25, 21, 16, 6, 14]) that reaching an explicit lower bound degree
deg X > dn both for Green-Griffiths algebraic degeneracy and for Kobayashi hyperbol-
icity (in nonoptimal degree) still remained an open question in arbitrary dimensionn, due
to the existence ofsubstantial algebraic obstacles. In order to render somewhat explicit
the lower bounddn of Theorem 3.1, one has to expand then2-powered intersection prod-
uct (11) and then to reduce it as an explicit polynomialPa,δ(d), as was foreseen in the
proof of Theorem 2.4. To this aim, one should descend Demailly’s tower step by step,
each time using the two relations (5) and (6). As a matter of fact, one must perform some
numerous, explicit eliminations and substitutions and thereby tame the exponential growth
of computations. At several places, we shall leave aside optimality of majorations in order
to reach the neat announced lower bound2n5

.

4.1. Reduction of the basic intersection product.We remind from Theorem 2.4 that,
in order to produce a global invariant jet differential withcontrolled vanishing order on
hypersurfacesX whose degreed > dn would be bounded from below by an effectively
known functiondn = d(n) of n, we should ensurein an effective waythe positivity of the
intersection product:

(
OXn(a)⊗ π∗

0,nOX(2|a|)
)n2

−

− n2
(
OXn(a)⊗ π∗

0,nOX(2|a|)
)n2−1

·
(
π∗

0,nOX(2|a|) ⊗ π∗
0,nK

δ|a|
X

)
,

for a certainn-tuple of integersa = a(n) ∈ Nn belonging to the cone (9) (withk = n)
which would dependeffectivelyuponn, and for a certain rational numberδ = δ(n) > 0
which would also dependeffectivelyuponn.
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As in [7], denoteuℓ = c1

(
OXℓ

(1)
)

for ℓ = 1, . . . , n, denoteck = ck(TX) for k =

1, . . . , n, andh = c1

(
OX(1)

)
. With these standard notations, the intersection product we

have to evaluate becomes:

(13) Πδ :=
(
a1u1 + · · ·+ anun + 2|a|h

)n2

−

− n2
(
a1u1 + · · · + anun + 2|a|h

)n2−1
·
(
2|a|h− δ|a|c1

)
;

here and from now on, admitting a slight abuse of notation which will greatly facilitate the
reading of formal computations,we systematically omit every pull-back symbolπ∗

j,k(•).
After elimination and reduction using the relations (5) and(6) (seebelow), our intersection
product gives in principle a polynomial (difficult to compute, seethe end of the paper) of
degree6 n+1 with respect tod = deg X, which is affine inδ, and all of which coefficients
are homogeneous polynomials ina of degreen2. Thus, let us call it:

Pa,δ(d) = Pa(d) + δ P′
a
(d) =

n+1∑

k=0

pk,a dk + δ

n+1∑

k=0

p′k,a dk.

Now, suppose in advance that we have an effective control, through explicit inequalities,
of all the coefficientspk,a ∈ Z andp′k,a ∈ Z of bothPa andP′

a
, and more precisely, that

we already know inequalities of the type:

|pk,a| 6 Ek (k = 0, ..., n), pn+1,a > Gn+1, |p′k,a| 6 E′
k (k = 0, ..., n, n+ 1),

with theEk ∈ N, with Gn+1 ∈ N \ {0} and with theE′
k ∈ N all depending uponn only.

According to the proof of Theorem 2.4, a good choice of weighta indeed makespn+1,a

positive; we will see below thatp′n+1,a is then necessarily negative.

If we now setδ := 1
2

Gn+1

E′
n+1

so thatδ also dependsa posterioriexplicitly uponn, the

leadingdn+1-coefficient ofPa,δ becomes positive and bounded from below:

pn+1,a + δ p′n+1,a = pn+1,a − δ
∣∣p′n+1,a

∣∣ > Gn+1 −
1
2

Gn+1

E′
n+1

E′
n+1 = 1

2 Gn+1.

The largest real root of a polynomialan+1 dn+1 + an dn + · · · + a0 having integer co-
efficients and positive leading coefficientan+1 > 1 may be checked to be less than
1 + (an + · · · + a0)

/
an+1. Applied to our situation:

Lemma 4.1. If one choosesδ := 1
2

Gn+1

E′
n+1

, then the intersection product
∑n+1

k=0

(
pk,a +

δ p′k,a

)
dk has positive leading coefficientpn+1,a + δ p′n+1,a > 1

2 Gn+1 and has other
coefficients enjoying the majorations:

∣∣∣pk,a + δ p′k,a

∣∣∣ 6 Ek + 1
2

Gn+1

E′
n+1

E′
k (k = 0, ..., n),

and therefore it takes only positive values for all degrees

d > 1 +
(
En + · · ·+ E0 + 1

2
Gn+1

E′

n+1

{
E′

n + · · ·+ E′

0

})/
1
2 Gn+1 =: d1

n. �

Thus thisd1
n will be effectively known in terms ofn whenEk, Gn+1, E′

k will be so. In
order to have not only the existence of global invariant jet differentials with controlled van-
ishing order, but also algebraic degeneracy, we have also totake account of condition (12),
and this condition now reads:

d > 1 + n + 2 + 2 (n2 + 2n)
E′

n+1

Gn+1
=: d2

n.
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In conclusion, we would obtain theeffectiveestimate of Theorem 1.1 provided we com-
pute the boundsEk, Gn+1, E′

k in terms ofn and provided we establish that:

(14) 2n5
> max

{
d1

n, d2
n

}
=: dn.

4.2. Expanding the intersection product. By expanding then2- and the(n2 − 1)-
powers, the intersection productΠδ in (13) writes as a certain sum, with coefficients being
polynomials inZ

[
a1, . . . , an, δ

]
, of monomials in the present Chern classes that are of the

general form:

hlui1
1 · · · u

in
n or hlc1u

j1
1 · · · u

jn
n ,

wherel + i1 + · · ·+ in = n2 or l + 1 + j1 + · · ·+ jn = n2.

Lemma 4.2([4, 6]). After several elimination computations which take accountof the re-
lations(5) and(6), any such monomial reduces to a certain polynomial inZ

[
h, c1, . . . , cn

]

which is homogeneous of degreen = dim X, if h is assigned the weight1 and eachck

receives the weightk. Furthermore, after a last substitution by means of(8) which uses
hn ≡

∫
X hn = d = deg X, the polynomial in question becomes a plain polynomial in

Z[d] of degree6 n + 1. �

We illustrate withhlui1
1 · · · u

in−1

n−1 uin
n three fundamental processes of reduction that will

be intensively used. Recall that anysubmonomialhlui1
1 · · · u

iℓ
ℓ = π∗

0,ℓ(h
l)π∗

1,ℓ(u
i1
1 ) · · · uiℓ

ℓ

denotes a differential form livingXℓ and thatdim Xℓ = n + ℓ(n − 1). Such a form is of
bidegree(p, p) wherep = l + i1 + · · ·+ iℓ. We shall allow the (slight) abuse of language
to say thatp itself is thedegreeof a (p, p)-form.

At first, if in 6 n−2, thenl+i1+· · ·+in−1 > n2−n+2 = 1+dimC Xn−1, whence the
(sub)formhlui1

1 · · · u
in−1

n−1 which lives onXn−1 annihilates, as then doeshlui1
1 · · · u

in−1

n−1 uin
n

too. We call this (straightforward) first kind of reduction process:

“vanishing for degree-form reasons”,

and we symbolically point out the annihilating subform by underlining it with a small
circle appended,viz.:

hlui1
1 · · · u

in−1

n−1 ◦
uin

n = 0 when in 6 n− 2.

This will greatly improve readability of elimination computations below.
Secondly, in the case wherein = n − 1, using an appropriate version of the Fubini

theorem and taking account of the fact that
∫
fiber un−1

n =
∫

Pn−1 un−1
n = 1, where all the

fibers ofπn−1,n : Xn → Xn−1 are≃ Pn−1(C) ([4, 18, 6, 7]), we may simplify as follows
our monomial:

hlui1
1 · · · u

in−1

n−1 un−1
n R = hlui1

1 · · · u
in−1

n−1 · 1 = hlui1
1 · · · u

in−1

n−1 .

We shall call this second kind of reduction process:

“fiber-integration”.

The third process of course consists in substituting the tworelations (5) and (6) as many
times as necessary. Withr = n and without anyπ∗

j,k(•), they now read:

(15) c
[ℓ]
j =

j∑

k=0

λj,j−k · c
[ℓ−1]
k

(
uℓ

)j−k
,
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where1 6 j, ℓ 6 n, with the conventionsc[ℓ]
0 = 1 andc

[0]
j = cj , where we set

λj,j−k :=
(n−k

j−k

)
−

( n−k
j−k−1

)
= (n−k)!

(j−k)! (n−j)! −
(n−k)!

(j−k−1)!(n−j+1)! ,

and also, with upper indices ofuℓ denoting exponents:

(16) un
ℓ = −c

[ℓ−1]
1 un−1

ℓ − c
[ℓ−1]
2 un−2

ℓ − · · · − c
[ℓ−1]
n−1 uℓ − c[ℓ−1]

n .

Estimating the coefficient ofdn+1. Our first main task is to reach a lower boundGn+1−
δ E′

n+1 for the coefficient ofdn+1 in Πδ, and this cannot be straightforward, becausee
there arevery numerousmonomials in the expansion ofΠδ. In a first reading, one might
jump directly to Subsection 4.4 just after Proposition 4.1.Here is an initial observation.

Lemma 4.3([7]). Assumel + i1 + · · ·+ in = n2 or l + 1 + j1 + · · ·+ jn = n2. Then as
soon asl > 1, one has:

0 = coeffdn+1

[
hlui1

1 · · · u
in
n

]
and 0 = coeffdn+1

[
hlc1u

j1
1 · · · u

jn
n

]
.

Proof. Indeed, after reduction of eitheru-monomial in terms of the Chern classesck of
the base, one obtains a sum with integer coefficients of termsof the form:

hlcλ1
1 cλ2

2 · · · c
λn
n

with l + λ1 + 2λ2 + · · · + nλn = n. But then if we replace the Chern classes by their
expressions (8) in terms ofh and of the degree, we get:

coeffdn+1

[
hlcλ1

1 cλ2
2 · · · c

λn
n

]
= coeffdn+1

[
(−1)λ1+···+λn hn · dλ1+λ2+···+λn + l.o.t

]

= coeffdn+1

[
(−1)λ1+···+λn d · dλ1+λ2+···+λn + l.o.t

]

= 0,

since1 + λ1 + λ2 + · · ·+ λn 6 l + λ1 + 2λ2 + · · ·+ nλn = n. �

As a result, a glance at (13) immediately shows that:

coeffdn+1

[
Πδ

]
= coeffdn+1

[(
a1u1 + · · ·+ anun

)n2

+ δ|a|c1

(
a1u1 + · · ·+ anun

)n2
−1

]
.

4.3. Reverse lexicographic ordering for theu-monomials. We order the collection of
all homogeneous monomialsui1

1 · · · u
in
n with i1+· · ·+in = n2 appearing in the expansion

of
(
a1u1 + · · ·+ anun

)n2

above by declaring that the monomialui1
1 · · · u

in
n is smaller, for

the reverse lexicographic ordering, than another monomialuj1
1 · · · u

jn
n , again of course

with j1 + · · ·+ jn = n2, if:




in > jn

or if in = jn but in−1 > jn−1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

or if in = jn, . . . , i3 = j3 but i2 > j2.

Observe thatin = jn, . . . , i2 = j2 implies i1 = j1. An equivalent language says that the
multiindices themselves are ordered in this way:

(i1, . . . , in) <revlex (j1, . . . , jn).

Proposition 4.1. The coefficient ofdn+1 in any monomialui1
1 · · · u

in
n which islargerthan

un
1 · · · u

n
n is zero:

coeffdn+1

[
ui1

1 · · · u
in
n

]
= 0 for any (i1, . . . , in) >revlex (n, . . . , n).
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Proof. Thus, assume(i1, . . . , in) >revlex (n, . . . , n). Firstly, if in = n, the claimed van-
ishing property is in all concerned subcases yielded by(iii) of the lemma just below.
Secondly, ifin = n − 1, an integration on the fiber ofπn−1,n : Xn → Xn−1 replaces
un−1

n by the constant+1, hence we are left withui1
1 · · · u

in−1

n−1 and(i) of the same lemma

then yields the conclusion. Thirdly and lastly, ifin 6 n − 2, then the formui1
1 · · · u

in−1

n−1
vanishes identically for degree-form reasons. Thus, granted the lemma, the proposition is
proved. �

Lemma 4.4. The coefficient ofdn+1 in all the following four sorts ofu-monomials is
equal to zero:

(i) ui1
1 · · · u

ik
k for anyk 6 n−1 and anyi1, . . . , ik with i1 + · · ·+ ik = n+k(n−1);

(ii) (c1)
n−k ui1

1 · · · u
ik
k for any k 6 n − 1, and anyi1, . . . , ik with ik 6 n − 1 and

i1 + · · · + ik = kn;

(iii) ui1
1 · · · u

il
l un

l+1 · · · u
n
n for any l 6 n, anyi1, . . . , il with il 6 n− 1 andi1 + · · ·+

il = ln;

(iv) c1u
i1
1 · · · u

il
l un

l+1 · · · u
n
n−1 for any l 6 n − 1, anyil 6 n − 1, anyi1, . . . , il with

i1 + · · · + il = ln.

Proof. Property(i) is established in Section 3 of [7]. So(i) holds.
Applying (15) written forj = 1, namelyc[ℓ]

1 = c
[ℓ−1]
1 + (n − 1)uℓ, we get:

(17) c
[ℓ]
1 = c1 + (n− 1)u1 + · · ·+ (n− 1)uℓ.

To begin with, we start from(i) for k = n − 1, in−1 = n and i1 + · · · + in−2 =
n + (n − 1)(n− 1)− in−1 = n2 − 2n + 1 arbitrary, namely:

0 = coeffdn+1

[
ui1

1 · · · u
in−2

n−2 un
n−1

]
.

Next, thanks to (16), we may replace in this equalityun
n−1 by−c

[n−2]
1 un−1

n−1−c
[n−2]
2 un−2

n−1−

· · · − c
[n−2]
n :

0 = coeffdn+1

[
ui1

1 · · · u
in−2

n−2

(
− c

[n−2]
1 un−1

n−1 − c
[n−2]
2 un−2

n−1 − · · · − c[n−2]
n ◦

)]

= coeffdn+1

[
ui1

1 · · · u
in−2

n−2

(
− c

[n−2]
1 un−1

n−1

)]
[degree-form reasons] [use (17)]

= coeffdn+1

[
ui1

1 · · · u
in−2

n−2

(
− c1 − (n− 1)u1 − · · · − (n− 1)un−2◦

)
un−1

n−1

]

= coeffdn+1

[
− c1u

i1
1 · · · u

in−2

n−2 un−1
n−1

]
[apply (i) again],

and we therefore get(ii) for k = n− 1 whenin−1 = n− 1. But in all the other remaining
cases whenin−1 6 n− 2, then by the assumption that the sum of the indicesil is equal to
(n− 1)n:

i1 + · · · + in−2 > (n− 1)n − (n− 2) = n2 − 2n + 2 = dimXn−2,

and consequently, the degree of the formc1u
i1
1 · · · u

in−2

n−2 is > 1 + dimXn−2, whence this
form vanishes identically. Thus(ii) is proved completely fork = n− 1.

Next, consider(iii) for l = n. If in 6 n − 2, then by degree-form reasons0 ≡
ui1

1 · · · u
in−1

n−1 , whencecoeffdn+1

[
ui1

1 · · · u
in−1

n−1 uin
n

]
= 0 gratuitously. So we assumein =
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n− 1. But theni1 + · · ·+ in−1 = n2 − n + 1, hence(i) applies to give:

0 = coeffdn+1

[
ui1

1 · · · u
in−1

n−1

]
[reconstitute hidden integration of un−1

n ]

= coeffdn+1

[
ui1

1 · · · u
in−1

n−1 un−1
n

]
,

and therefore this proves(iii) completely forl = n. But we also get at the same time the
property(iii) for l = n−1. Indeed, withi1+· · ·+in−1 = (n−1)n and within−1 6 n−1,
we may reduce, using (16):

ui1
1 · · · u

in−1

n−1 un
n = ui1

1 · · · u
in−1

n−1

[
− c

[n−1]
1 un−1

n − c
[n−1]
2 un−2

n − · · · − c[n−1]
n ◦

]

= ui1
1 · · · u

in−1

n−1

[
− c

[n−1]
1 un−1

n

]
[degree-form reasons] [use (17)]

= ui1
1 · · · u

in−1

n−1

[
− c1 − (n− 1)u1 − · · · − (n− 1)un−1

]

Thanks to(i), after expansion, the pureu-monomials give no contribution todn+1, and
consequently:

coeffdn+1

[
ui1

1 · · · u
in−1

n−1 un
n

]
= coeffdn+1

[
− c1u

i1
1 · · · u

in−1

n−1

]
= 0,

where the last equality holds true thanks to the property(ii) already proved fork = n− 1.
Thus(iii) is completely proved forl = n and forl = n− 1.

Lastly, we just observe that(iv) for l = n − 1 coincides with(ii) for k = n − 1. In
summary, we have completed a first loop of proofs.

Consider now the second loop. We start from(ii) for k = n − 1 (already got) with
in−1 = n − 1 and within−2 = n, so thati1 + · · · + in−3 = (n − 1)n − in−2 − in−1 =
n2 − 3n + 1, and then we compute:

0 = coeffdn+1

[
c1u

i1
1 · · ·u

in−3

n−3 un
n−2u

n−1
n−1R

]
[fiber-integration]

= coeffdn+1

[
c1u

i1
1 · · ·u

in−3

n−3

(
− c

[n−3]
1 un−1

n−2 − c
[n−3]
2 un−2

n−2 − · · · − c[n−3]
n

◦

)]
[use (16)]

= coeffdn+1

[
c1u

i1
1 · · ·u

in−3

n−3

(
− c

[n−3]
1

)
un−1

n−2

]
[degree-form reasons] [use (17)]

= coeffdn+1

[
c1u

i1
1 · · ·u

in−3

n−3

(
− c1 − (n− 1)u1 − · · · − (n− 1)un−3

◦

)
un−1

n−2u
n−1
n−1R

]

= coeffdn+1

[
− c1c1u

i1
1 · · ·u

in−3

n−3 un−1
n−2u

n−1
n−1R

]
[apply (ii) for k = n − 1 again]

= coeffdn+1

[
− c1c1u

i1
1 · · ·u

in−3

n−3 un−1
n−2

]
[fiber-integration],

where we have reintroducedun−1
n−1 (artificially) in the fourth line, so as to apply(ii) for

k = n−1 (got). As a result of the last obtained equation, we have gained(ii) for k = n−2

whenin−2 = n − 1, but since whenin−2 6 n − 2, the formc1c1u
i1
1 · · · u

in−3

n−3 vanishes
identically for degree reasons, we finally have fully established(ii) for k = n− 2.

Next, we look at(iii) for l = n−2. Theni1 + · · ·+in−2 = (n−2)n with in−2 6 n−1.
So we ask whether the following coefficient vanishes:

coeffdn+1

[
ui1

1 · · ·u
in−2

n−2 un
n−1u

n
n

]
=

= coeffdn+1

[
ui1

1 · · ·u
in−2

n−2 un
n−1

(
c1 − (n− 1)u1 − · · · − (n− 1)un−1

◦

)]

= coeffdn+1

[
− c1u

i1
1 · · ·u

in−2

n−2 un
n−1

]

= coeffdn+1

[
− c1u

i1
1 · · ·u

in−2

n−2

(
− c1 − (n− 1)u1 − · · · − (n− 1)un−2

)
un−1

n−1

]

= coeffdn+1

[
c1c1u

i1
1 · · ·u

in−2

n−2 un−1
n−1R

]

= 0,
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and in fact, this coefficient vanishes actually, thanks to(ii) for k = n − 2 seen a moment
ago. This therefore proves(iii) for l = n− 2 completely.

Finally, consider(iv) for l = n−2. Theni1 + · · ·+ in−2 = (n−2)n andin−2 6 n−1.
But coming back to the third line of the equations just above,wherein−2 6 n− 1 too, we
have in fact already implicitly proved that:

0 = coeffdn+1

[
c1u

i1
1 · · · u

in−2

n−2 un
n−1

]
,

and this is(iv) for l = n−2. Thus, the second loop is completed, and the general induction,
similar, is now intuitively clear. �

Corollary 4.1. The coefficient ofdn+1 in any monomialc1u
j1
1 · · · u

jn−1

n−1 ujn
n with 1 + j1 +

· · ·+ jn−1 + jn = n2 which is larger thanc1u
n
1 · · · u

n
n−1u

n−1
n is zero:

coeffdn+1

[
c1u

j1
1 · · ·u

jn−1

n−1 ujn
n

]
= 0,

for any (j1, . . . , jn−1, jn) >revlex (n, . . . , n, n− 1).

Furthermore:

coeffdn+1

[
un

1 · · · u
n
n−1u

n
n

]
= coeffdn+1

[
(−1)n(c1)

n
]

= +1.

coeffdn+1

[
c1u

n
1 · · · u

n
n−1u

n−1
n

]
= coeffdn+1

[
(−1)n−1(c1)

n
]

= −1.

Proof. The first claim is just a rephrasing of the property(iv) of the lemma, after one
notices thatc1u

j1
1 · · · u

jn−1

n−1 ujn
n vanishes identically for degree reasons whenjn 6 n − 2,

while the termun−1
n = ujn

n disappears after fiber integration whenjn = n − 1. The
identities stated just after now have obvious proofs. �

4.4. Minorating coeffdn+1

[
Π

]
. Let us decompose the intersection productΠδ defined

by (13) asΠ + δΠ′, where:

Π :=
(
a1u1 + · · ·+ anun + 2|a|h

)n2

− n2h
(
a1u1 + · · ·+ anun + 2|a|h

)n2
−1

2|a|,

Π′ := n2c1

(
a1u1 + · · ·+ anun + 2|a|h

)n2
−1
|a|.

The (ineffective) Lemma 4.2 insures that the reduction ofΠ in terms ofd = deg X is a
certain polynomial:

Pa(d) =

n+1∑

k=0

pk,a dk,

having certain coefficientspk,a ∈ Z
[
a1, . . . , an

]
. Moreover, Lemma 4.3 showed that

positive powers ofh do not contribute to the leading coefficient, whence:

pn+1,a = coeffdn+1

[
Π

]
= coeffdn+1

[(
a1u1 + · · ·+ anun

)n2]

= coeffdn+1

[(
a1u1 + · · ·+ anun + 2|a|h

)n2]
.

Because the bundle:
OXn(a)⊗ π∗

0,nOXn(2|a|)

is globally nef when(a1, . . . , an) belongs to the cone (9) (withk = n), its maximaln2-

th power to which corresponds
(
a1u1 + · · · + anun + 2|a|h

)n2

has positive dominating
coefficient, so that we in fact always have (cf. the proof of Corollary 3.1 in [7]):

pn+1,a > 0.
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But from the corollary just above, we know thatpn+1,a ∈ Z[a] is not identically zero, for
it incorporates at least the nonzero (central) monomial:

coeffdn+1

[
n2!

n! ···n! an
1 · · · a

n
n un

1 · · · u
n
n

]
= n2!

n! ···n! an
1 · · · a

n
n.

Then, in order to capture a weighta for whichpn+1,a > 0, we at first observe that the cube
of Nn having edges of lengthn2 which consists of all integers(a1, . . . , an) satisfying the
inequalities:

1 6 an 6 1 + n2, 3n2 6 an−1 6 (3 + 1)n2, (32 + 3)n2 6 an−2 6 (32 + 3 + 1)n2

. . . , (3n−1 + · · ·+ 3)n2 6 a1 6 (3n−1 + · · ·+ 3 + 1)n2

is visibly contained in the cone in question:

an > 1, an−1 > 2an, an−2 > 3an−1, . . . , a1 > 3a2.

We now claim that there exists at least onen-tuple of integersa∗ = (a∗1, . . . , a
∗
n) belonging

to this cube with the property thatpn+1,a∗ is nonzero, and hence:

pn+1,a∗ > 1 =: Gn+1,

so that we can take1 as the minorant introduced at the beginning. Indeed,pn+1,a is a
homogeneous polynomial of degreen2 to which an elementary lemma applies.

Lemma 4.5. Let q = q(b1, . . . , bν) ∈ Z
[
b1, . . . , bν

]
be a polynomial of degreec > 1.

Thenq can vanish at all points of a cube of integers having edges of length equal to its
degreec only when it is identically zero.

Proof. Expandq =
∑c

k1=0 bk1
1 qk1(b2, . . . , bν), recognize a(c + 1) × (c + 1) Van der

Monde determinant, deduce that eachqk1(b2, . . . , bν) vanishes at all points of a similar
cube in a space of dimensionν − 1, and terminate by induction. �

4.5. Majorating the other coefficients coeffdk

[
Π

]
. Now, for such ana∗ which is not

very precisely located in the cube, we nevertheless have theeffective control, useful below:

max
16i6n

a∗i = a∗1 = 3n−1
2 n2

6 3n

2 n2.

From now on, we shall simply denotea∗ by a. At present, for any integerk with 0 6 k 6

n, let us denote byDk(n) any available bound (seein advance Theorem 5.1) in terms ofn

only for the maximal absolute value of the coefficient ofdk in all monomialshlui1
1 · · · u

in
n

with l + i1 + · · ·+ in = n2, namely:

max
l+i1+···+in=n2

∣∣coeffdk

[
hlui1

1 · · · u
in
n

]∣∣ 6 Dk(n).

Then for anyk with 0 6 k 6 n, we now aim at estimating from above the coefficient of
dk in our intersection productΠ, using two new lemmas and starting from its expansion,
all terms of which we shall have to control:

∣∣coeffdk

[
Π

]∣∣ 6

6
∑

l+i1+···+in=n2

n2!
l! i1! ··· in! · (2|a|)

lai1
1 · · ·a

in
n ·

∣∣coeffdk

[
hlui1

1 · · ·u
in
n

]∣∣+

+
∑

l+j1+···+jn=n2
−1

n2 (n2
−1)!

l! j1! ··· jn! · 2|a|(2|a|)
laj1

1 · · · a
jn
n ·

∣∣coeffdk

[
hhluj1

1 · · ·u
jn
n

]∣∣.
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Lemma 4.6. Let l, i1, . . . , in ∈ N satisfyingl+i1+· · ·+in = n2 and letl, j1, . . . , jn ∈ N
satisfyingl + j1 + · · ·+ jn = n2 − 1. Then:

n2!
l! i1! ··· in! 6 (n + 1)n

2
and: n2 (n2−1)!

l! j1! ··· jn! 6 (n + 1)n
2+1.

Furthermore, the number of summands in
∑

l+i1+···+in=n2 and the number of summands
in

∑
l+j1+···+jn=n2−1, which are both plain binomial coefficients, enjoy the following two

elementary majorations:

(n2+n)!
n2! n!

6 4n2n−1 and: (n2−1+n)!
(n2−1)! n!

6 2n2n−1.

Proof. Indeed, any multinomial coefficient n2!
l! i1! ··· in! is less than or equal to the sum of all

multinomial coefficients(1 + 1 + · · ·+ 1)n
2

= (n + 1)n
2
. At the same time, we deduce:

n2 (n2−1)!
l!j1!···jn! = n2(n + 1)n

2−1 6 (n + 1)n
2+1.

For the second claim, we as a preliminary have:

(n2+n−1)!
n2! (n−1)!

= (n2+1)···(n2+n−1)
1 ··· (n−1) 6

(n2+n2)···(n2+n2)
(n−1)! = 2n−1 n2n−2

(n−1)! 6 2n2n−2,

since2n−1 6 2 (n − 1)! for anyn > 1. Consequently, we deduce:

(n2+n)!
n2!n! = (n2+n−1)!

n2! (n−1)! ·
(n2+n)

n 6 2n2n−2 · (n + 1
n) 6 4n2n−1,

and similarly: (n2−1+n)!
(n2−1)! n!

6
(n2+n−1)!
n2! (n−1)!

· n2

n 6 2n2n−2 · n = 2n2n−1. �

Lemma 4.7. For any l, i1, . . . , in ∈ N satisfyingl + i1 + · · ·+ in = n2, one has:

(2|a|)lai1
1 · · · a

in
n 6 n3n2

3n3
.

Proof. Indeed, we majorate eachai by |a| and|a| = a1 + · · · + an by na1, and alsol by

n2, so that(2|a|)lai1
1 · · · a

in
n 6 2n2(

na1

)n2

and we applya1 6 3n

2 n2. �

Thanks to these two lemmas, we may perform majorations:
∣∣coeffdk

[
Π

]∣∣ 6 4 n2n−1 · (n + 1)n2

· n3n2

3n3

· Dk(n)+

+ 2 n2n−1 · (n + 1)n2+1 · n3n2

3n3

·Dk(n)

6 6 n2n−1 · (n + 1)n2+1 · n3n2

3n3

· Dk(n) (k = 0, ..., n).

Lemma 4.8. For any exponentk with 0 6 k 6 n, one has:
∣∣coeffdk

[
Π

]∣∣ 6 6n2n−1 · (n + 1)n
2
· n3n2

3n3
· Dk(n). �

To conclude these estimates, for any integerk = 0, 1, . . . , n, n + 1, let us denote by
D′

k(n) any available majorant for all the monomials appearing inΠ′:

max
1+l+j1+···+jn=n2

∣∣coeffdk

[
c1h

luj1
1 · · · u

jn
n

]∣∣ 6 D′
k(n).

Lemma 4.9. For any exponentk with 0 6 k 6 n + 1, one has:
∣∣coeffdk

[
Π′

]∣∣ 6 n2n−1 · (n + 1)n
2+1 · n3n2

3n3
· D′

k(n).
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Proof. Indeed, one performs the similar majorations:
∣∣coeffdk

[
Π′

]∣∣ 6

6
∑

l+j1+···+jn=n2−1

n2 (n2
−1)!

l! j1! ··· jn! · |a|(2|a|)
laj1

1 · · · a
jn
n ·

∣∣coeffdk

[
c1h

luj1
1 · · ·u

jn
n

]∣∣

6 2 n2n−1 · (n + 1)n2+1 · 1
2 n3n2

3n3

· D′

k(n)

6 n2n−1 · (n + 1)n2+1 · n3n2

3n3

·D′

k(n),

hence the bound we obtain is exactly the same, up to the factor6. �

4.6. Final effective estimations. We can now explain how to achieve the proof of Theo-
rem 1.1. At first, we shall realize in Section 5 that both constant coefficientscoeffd0

[
Π

]
=

coeffd0

[
Π′

]
= 0 vanish, henceD0(n) = D′

0(n) = 0 works. Most importantly, we shall
establish in Section 5 that one may choose:

D1(n) = · · · = Dn(n) = D′

1(n) = · · · = D′

n(n) = D′

n+1(n) = n4n3

2n4

.

Takingn4n3
2n4

for granted, remind that with the above choice of weighta
∗ (now denoted

a), we ensure that:

coeffdn+1

[
Π

]
= pn+1,a > 1 =: Gn+1.

From the preceding two lemmas, we therefore deduce that:
∣∣coeffdk

[
Π

]∣∣ 6 6n2n−1 · (n + 1)n
2+1 · n3n2

3n3
· n4n3

2n4
=: 6H(n) (k = 1 ···n)

∣∣coeffdk

[
Π′

]∣∣ 6 n2n−1 · (n + 1)n
2+1 · n3n2

3n3
· n4n3

2n4
=: H(n) (k = 1 ···n + 1).

so that, coming back to the beginning of Section 4, we may chooseE0 = E′
0 = 0 (since

D0(n) = D′
0(n) = 0) and also explicitly in terms ofn:

E1 = · · · = En = 6H(n)

E′
1 = · · · = E′

n = E′
n+1 = H(n).

Coming back to the definition ofd1
n, d2

n given at the end of Lemma 4.1 and just after, we
may now majorate:

d1
n 6 1 +

(
n 6 H(n) + n+1

2

)/
1
2 =: d̃1

n,

d2
n 6 1 + n + 2 + 2 (n2 + 2n)H(n) =: d̃2

n.

Notice thatd̃2
n > d̃1

n as soon asn > 3. Finally, by comparing the growth of all terms in
H(n) asn→∞, one sees that2n4

dominates and hence that the following inequality:

d̃2
n = 1 + n + 2 + 2 (n2 + 2n) · n2n−1 · (n + 1)n

2+1 · n3n2
3n3
· n4n3

2n4
6 2n5

,

holds for all largen. However, any symbolic computer shows that forn = 2, 3, 4, one in
fact hasd̃2

2 > 225
, d̃2

3 > 235
, d̃2

4 > 245
, while d̃2

5 < 2n5
andd̃2

n ≪ 2n5
for n = 6, 7, 8, 9 so

that d̃2
n < 2n5

holds for anyn > 5 by an elementary inspection ofn 7→ d̃2
n. Fortunately,

the three casesn = 2, n = 3 andn = 4 of Theorem 1.1 are covered by the second
Theorem 1.2, because225

> 593, 235
> 3203 and245

> 35355. So granted Sections 5
and 6 below, the announced bounddeg X > 2n5

works in all dimensionsn > 5.
The proof of the main theorem stated in the introduction is complete. �
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5. ESTIMATIONS OF THE QUANTITIESDk(n) AND D′
k(n)

To complete our program, it now remains only to capture somewhat effective upper
boundsDk(n), 0 6 k 6 n andD′

k(n), 0 6 k 6 n + 1.

Theorem 5.1. Withn > 2, for anyl, i1, . . . , in ∈ N with l + i1 + · · ·+ in = n2 and any
l, j1, . . . , jn ∈ N with 1 + l + j1 + · · ·+ jn = n2, one has:

0 = coeffd0

[
hlui1

1 · · · u
in
n

]
= coeffd0

[
c1h

luj1
1 · · · u

jn
n

]
.

Moreover and above all, for everyk = 1, . . . , n+1, the following uniform effective upper
bound holds: ∣∣coeffdk

[
hlui1

1 · · · u
in
n

]∣∣ 6 n4n3
2n4

,
∣∣coeffdk

[
c1h

luj1
1 · · · u

jn
n

]∣∣ 6 n4n3
2n4

.

In other words, in the above notations, one may chooseD0(n) = D′
0(n) = 0 and

Dk(n) = D′
k(n) = n4n3

2n4
for k = 1, . . . , n + 1.

5.1. Jacobi-Trudy determinants. One key observation towards these estimations is that
the reduction process from one level to the lower level in Demailly’s tower involves Jacobi-
Trudy determinants in the Chern classes of the lower level inquestion.

Definition 5.1. At any levelℓ with 0 6 ℓ 6 n− 1 and for anyJ with 0 6 J 6 n + ℓ(n−
1) = dimXℓ, we define the correspondingJacobi-Trudy determinant:

Cℓ
J :=

∣∣∣∣∣∣∣∣∣∣∣

c
[ℓ]
1 c

[ℓ]
2 c

[ℓ]
3 · · · c

[ℓ]
J

1 c
[ℓ]
1 c

[ℓ]
2 · · · c

[ℓ]
J−1

0 1 c
[ℓ]
1 · · · c

[ℓ]
J−1

· · · · · · ·

0 0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣∣

,

where, again by convention, we set anyc
[ℓ]
k := 0 as soon ask > n + 1; by convention

also,Cℓ
J := 0 is set to zero whenJ > dimXℓ and whenJ < 0; lastly, we setCℓ

0 := 1.

Expanding the determinantCℓ
J along its first line, and expanding again the obtained

block-determinants, one easily convinces oneself of the induction formulas:

(18) Cℓ
J = c

[ℓ]
1 Cℓ

J−1 − c
[ℓ]
2 Cℓ

J−2 + c
[ℓ]
3 Cℓ

J−3 − · · · ,

the last term in this expansion being either(−1)n−1 c
[ℓ]
n Cℓ

J−n when J > n or else

(−1)J−1 c
[ℓ]
J Cℓ

0 whenJ < n.
In the proof of Theorem 5.1, the study of the monomialsui1

1 · · · u
in
n will appeara poste-

riori to be exactly the same as the study of the monomialshlui1
1 · · · u

in
n andc1h

luj1
1 · · · u

jn
n .

Generally speaking, fixingℓ with 1 6 ℓ 6 n and exponentsi1, . . . , iℓ ∈ N satisfying
i1 + · · ·+ iℓ = n+ ℓ(n− 1) = dim Xℓ, let us therefore study the reduction, in term of the
degreed of X, of the specific monomialui1

1 · · · u
iℓ−1

ℓ−1 uiℓ
ℓ . We write it asΩℓ−1

K uiℓ
ℓ , where

Ωℓ−1
K := ui1

1 · · · u
iℓ−1

ℓ−1 is a(K,K)-form living onXℓ−1 with K + iℓ = n + ℓ(n− 1).

If iℓ 6 n − 2, thenΩℓ−1
K vanishes form degree-form reasons. Ifiℓ = n − 1, then a

fiber-integration givesΩℓ−1
K un−1

ℓ R = Ωℓ−1
K · 1 = Ωℓ−1

K Cℓ−1
0 .
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Lemma 5.1. For anyℓ with 1 6 ℓ 6 n, given any(K,K)-form Ωℓ−1
K at levelℓ − 1 and

any integeriℓ with iℓ > n − 1 and iℓ + K = dim Xℓ, the reduction ofΩℓ−1
K uiℓ

ℓ down to
levelℓ− 1 precisely reads:

Ωℓ−1
K uiℓ

ℓ = (−1)iℓ−n+1 Ωℓ−1
K

∣∣∣∣∣∣∣∣∣

c
[ℓ−1]
1 c

[ℓ−1]
2 · · · c

[ℓ−1]
iℓ−n+1

1 c
[ℓ−1]
1 · · · c

[ℓ−1]
iℓ−n

· · · · · ·

0 0 · · · c
[ℓ−1]
1

∣∣∣∣∣∣∣∣∣

= (−1)iℓ−n+1 Ωℓ−1
K Cℓ−1

iℓ−n+1.

Proof. Assume first thatiℓ = n and use (16) to get:

Ωℓ−1
K un

ℓ = −Ωℓ−1
K c

[ℓ−1]
1 un−1

ℓ R − Ωℓ−1
K c

[ℓ−1]
2 ◦

un−2
ℓ − · · · − Ωℓ−1

K c[ℓ−1]
n ◦

= −Ωℓ−1
K Cℓ−1

1 .

Reasoning by induction, assume now that the lemma holds for all i′ℓ with n 6 i′ℓ 6 iℓ for
someiℓ > n. Take an arbitrary(L,L)-form Ωℓ−1

L on Xℓ−1 with L + iℓ + 1 = dim Xℓ,
multiply (16) byΩℓ−1

L uiℓ+1−n
ℓ to get:

Ωℓ−1
L uiℓ+1

ℓ = −Ωℓ−1
L

(
c
[ℓ−1]
1 uiℓ

ℓ + c
[ℓ−1]
2 uiℓ−1

ℓ + c
[ℓ−1]
3 uiℓ−2

ℓ + · · ·
)

= (−1)1+iℓ−n+1 Ωℓ−1
L

(
c
[ℓ−1]
1 C

ℓ−1
iℓ−n+1 − c

[ℓ−1]
2 C

ℓ−1
iℓ−n + c

[ℓ−1]
3 C

ℓ−1
iℓ−n−1 − · · ·

)

= (−1)iℓ+1−n+1 Ωℓ−1
L C

ℓ−1
iℓ+1−n+1,

thanks to (18), which gives the claimed reduction for the exponentiℓ + 1. �

Applying this lemma to the monomialui1
1 · · · u

iℓ
ℓ u

iℓ+1

ℓ+1 , we thus reduce it to

ui1
1 · · · u

iℓ
ℓ u

iℓ+1

ℓ+1 = (−1)iℓ+1−n+1 ui1
1 · · · u

iℓ
ℓ Cℓ

iℓ+1−n+1 .

To obtain effective estimations, we will need to further reduce such a Jacobi-Trudy de-
terminantCℓ

iℓ+1−n+1 from level ℓ down to levelℓ − 1. A whole program begins. In the

application we have in mind, one should think thatΩℓ
K = (−1)iℓ+1−n+1 ui1

1 · · · u
iℓ
ℓ and

thatJ = iℓ+1 − n + 1.

Lemma 5.2. At an arbitrary levelℓ with 1 6 ℓ 6 n − 1, consider the Jacobi-Trudy
determinantCℓ

J of an arbitrary sizeJ × J with 1 6 J 6 dimXℓ and furthermore, letΩℓ
K

be any(K,K)-form onXℓ whose degreeK satisfiesK + J = dim Xℓ = n + ℓ(n − 1).
Then the reduction ofΩℓ

KCℓ
J down to levelℓ− 1 relies upon the following formulas:

Ωℓ
KCℓ

J = Ωℓ
K

[
Cℓ−1

J + Cℓ
0A

ℓ
J + Cℓ

1A
ℓ
J−1 + · · ·+ Cℓ

J−1A
ℓ
1

]
,

in which, for anyk with 1 6 k 6 J , one has set:

Aℓ
k := Xℓ

1C
ℓ−1
k−1 − Xℓ

2C
ℓ−1
k−2 + · · ·+ (−1)k−1Xℓ

kC
ℓ−1
0 ,

where theX-terms here gather all the terms afterc
[ℓ−1]
j in a convenient rewriting of(15)

under the following form:

c
[ℓ]
j = c

[ℓ−1]
j + λj,1 c

[ℓ−1]
j−1 uℓ + λj,2 c

[ℓ−1]
j−2 u2

ℓ + · · · + λj,j uj
ℓ︸ ︷︷ ︸

def
= Xℓ

j

,

with the convention thatXℓ
j = 0 for anyj > n + 1.
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Proof. Naturally, we should expand the Jacobi-Trudy determinant in question after insert-
ing in it the relation (15). This is based on linear algebra considerations and we shall drop
Ωℓ

K in the computations.
More precisely, let us write down the determinantCℓ

J we have to expand:

Cℓ
J =

∣∣∣∣∣∣∣∣∣∣

c
[ℓ]
1 c

[ℓ]
2 · · · c

[ℓ]
J

1 c
[ℓ]
1 · · · c

[ℓ]
J−1

...
...

. . .
...

0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

Xℓ
1 + c

[ℓ−1]
1 c

[ℓ]
2 · · · c

[ℓ]
J

0 + 1 c
[ℓ]
1 · · · c

[ℓ]
J−1

...
...

. . .
...

0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣

by emphasizing the induction onℓ which represents its first column naturally as the sum
of two columns. As already devised, we expand it by linearity, getting:

Cℓ
J =

∣∣∣∣∣∣∣∣∣∣

Xℓ
1 c

[ℓ]
2 · · · c

[ℓ]
J

0 c
[ℓ]
1 · · · c

[ℓ]
J−1

...
...

. . .
...

0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣

c
[ℓ−1]
1 c

[ℓ]
2 · · · c

[ℓ]
J

1 c
[ℓ]
1 · · · c

[ℓ]
J−1

...
...

. . .
...

0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣

,

and just afterwards immediately, we expand the first determinant along its first column,
while at the same time, in the second column of the second determinant, we again empha-
size the induction onℓ:

Cℓ
J = Xℓ

1 · C
ℓ
J−1 +

∣∣∣∣∣∣∣∣∣∣∣∣

c
[ℓ−1]
1 Xℓ

2 + c
[ℓ−1]
2 c

[ℓ]
3 · · · c

[ℓ]
J

1 Xℓ
1 + c

[ℓ−1]
1 c

[ℓ]
2 · · · c

[ℓ]
J−1

0 0 + 1 c
[ℓ]
1 · · · c

[ℓ]
J−2

...
...

...
.. .

...

0 0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣∣∣

.

Next, we similarly expand by linearity the obtained determinant, realizing again that its
second column is a sum of two columns:

Cℓ
J = Xℓ

1 · C
ℓ
J−1 +

∣∣∣∣∣∣∣∣∣∣∣∣

c
[ℓ−1]
1 Xℓ

2 c
[ℓ]
3 · · · c

[ℓ]
J

1 Xℓ
1 c

[ℓ]
2 · · · c

[ℓ]
J−1

0 0 c
[ℓ]
1 · · · c

[ℓ]
J−2

...
...

...
. . .

...

0 0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

c
[ℓ−1]
1 c

[ℓ−1]
2 c

[ℓ]
3 · · · c

[ℓ]
J

1 c
[ℓ−1]
1 c

[ℓ]
2 · · · c

[ℓ]
J−1

0 1 c
[ℓ]
1 · · · c

[ℓ]
J−2

...
...

...
. . .

...

0 0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣∣∣

,
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and evidently again, we must expand the first obtained determinant along its second col-
umn, getting:

Cℓ
J = Xℓ

1 · C
ℓ
J−1 − Xℓ

2 ·

∣∣∣∣∣∣∣∣∣∣

1 c
[ℓ]
2 · · · c

[ℓ]
J−1

0 c
[ℓ]
1 · · · c

[ℓ]
J−2

...
...

. . .
...

0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣

+ Xℓ
1 ·

∣∣∣∣∣∣∣∣∣∣

c
[ℓ−1]
1 c

[ℓ]
3 · · · c

[ℓ]
J

0 c
[ℓ]
1 · · · c

[ℓ]
J−2

...
...

. ..
...

0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c
[ℓ−1]
1 c

[ℓ−1]
2 Xℓ

3 + c
[ℓ−1]
3 c

[ℓ]
4 · · · c

[ℓ]
J

1 c
[ℓ−1]
1 Xℓ

2 + c
[ℓ−1]
2 c

[ℓ]
3 · · · c

[ℓ]
J−1

0 1 Xℓ
1 + c

[ℓ−1]
1 c

[ℓ]
2 · · · c

[ℓ]
J−2

0 0 0 + 1 c
[ℓ]
1 · · · c

[ℓ]
J−3

...
...

...
...

. . .
...

0 0 0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and we are supposed to iterate once again the same two processes:

Cℓ
J = Xℓ

1 · C
ℓ
J−1 − Xℓ

2 · 1 · C
ℓ
J−2 + Xℓ

1 · C
ℓ−1
1 · Cℓ

J−2

+ Xℓ
3 ·

∣∣∣∣
1 c

[ℓ−1]
1

0 1

∣∣∣∣ ·

∣∣∣∣∣∣∣

c
[ℓ]
1 · · · c

[ℓ]
J−3

...
. . .

...

0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣

− Xℓ
2 ·

∣∣∣∣
c
[ℓ−1]
1 c

[ℓ−1]
2

0 1

∣∣∣∣ ·

∣∣∣∣∣∣∣

c
[ℓ]
1 · · · c

[ℓ]
J−3

...
. . .

...

0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣

+ Xℓ
1 ·

∣∣∣∣∣
c
[ℓ−1]
1 c

[ℓ−1]
2

1 c
[ℓ−1]
1

∣∣∣∣∣ ·

∣∣∣∣∣∣∣

c
[ℓ]
1 · · · c

[ℓ]
J−3

...
. . .

...

0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c
[ℓ−1]
1 c

[ℓ−1]
2 c

[ℓ−1]
3 Xℓ

4 + c
[ℓ−1]
4 c

[ℓ]
5 · · · c

[ℓ]
J

1 c
[ℓ−1]
1 c

[ℓ−1]
2 Xℓ

3 + c
[ℓ−1]
3 c

[ℓ]
4 · · · c

[ℓ]
J−1

0 1 c
[ℓ−1]
1 Xℓ

2 + c
[ℓ−1]
2 c

[ℓ]
3 · · · c

[ℓ]
J−2

0 0 1 Xℓ
1 + c

[ℓ−1]
1 c

[ℓ]
2 · · · c

[ℓ]
J−3

0 0 0 0 + 1 c
[ℓ]
1 · · · c

[ℓ]
J−4

...
...

...
...

...
. . .

...

0 0 0 0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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At this point where things start to become clearer, we make the following general obser-
vation. Consider the determinant that one obtains after a finite number of steps:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c
[ℓ−1]
1 c

[ℓ−1]
2 · · · c

[ℓ−1]
k−1 Xℓ

k + c
[ℓ−1]
k c

[ℓ]
k+1 · · · c

[ℓ]
J

1 c
[ℓ−1]
1 · · · c

[ℓ−1]
k−2 Xℓ

k−1 + c
[ℓ−1]
k−1 c

[ℓ]
k · · · c

[ℓ]
J−1

...
...

.. .
...

...
...

. . .
...

0 0 · · · c
[ℓ−1]
1 Xℓ

2 + c
[ℓ−1]
2 c

[ℓ]
3 · · · c

[ℓ]
J−k+2

0 0 · · · 1 Xℓ
1 + c

[ℓ−1]
1 c

[ℓ]
2 · · · c

[ℓ]
J−k+1

0 0 · · · 0 0 + 1 c
[ℓ]
1 · · · c

[ℓ]
J−k

...
...

.. .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · c
[ℓ]
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where the central-looking column is thek-th one, for somek with 1 6 k 6 J . Write
this determinant as a sum of two determinants by linearity, and expand the first obtained
determinant, let us call it∆k, along itsk-th column in which are present all theXℓ

k ’s. We
thus get that the first determinant is equal to:

∆k := (−1)k+1 Xℓ
k ·

∣∣∣∣∣∣∣

1 · · · c
[ℓ−1]
k−2

...
. . .

...
0 · · · 1

∣∣∣∣∣∣∣
· Cℓ

J−k

+ (−1)k+2 Xℓ
k−1 ·

∣∣∣∣∣∣∣∣∣

c
[ℓ−1]
1 ∗ · · · ∗

0 1 · · · c
[ℓ−1]
k−3

...
...

. . .
...

0 0 · · · 1

∣∣∣∣∣∣∣∣∣

· Cℓ
J−k

+ (−1)k+3 Xℓ
k−2 ·

∣∣∣∣∣∣∣∣∣∣∣∣

c
[ℓ−1]
1 c

[ℓ−1]
2 ∗ · · · ∗

1 c
[ℓ−1]
1 ∗ · · · ∗

0 0 1 · · · c
[ℓ−1]
k−4

...
...

...
. . .

...
0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣

· Cℓ
J−k

+ · · ·+ (−1)k+k Xℓ
1 ·

∣∣∣∣∣∣∣∣

c
[ℓ−1]
1 · · · c

[ℓ−1]
k−1

...
. . .

...

0 · · · c
[ℓ−1]
1

∣∣∣∣∣∣∣∣
· Cℓ

J−k,

while the second determinant is of the same kind as the one we started with, except that
theX’s are now located in the(k + 1)-th column. Thus after mild simplifications, what
we called the first determinant equals:

∆k = (−1)k+1 Xℓ
k · 1 · C

ℓ
J−k + (−1)k+2 Xℓ

k−1 · C
ℓ−1
1 · Cℓ

J−k+

+ (−1)k+3 Xℓ
k−2 · C

ℓ−1
2 · Cℓ

J−k + · · ·+ Xℓ
1 · C

ℓ−1
k−1 · C

ℓ
J−k

= Aℓ
kCℓ

J−k.
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In conclusion, the initial Jacobi-Trudy determinantCℓ
J we started with now equals:

Cℓ
J = ∆1 + · · · + ∆k + · · ·+ ∆J +

∣∣∣∣∣∣∣

c
[ℓ−1]
1 · · · c

[ℓ−1]
J

...
. . .

...

0 · · · c
[ℓ−1]
1

∣∣∣∣∣∣∣
,

where the last written determinant, equal toCℓ−1
J and living at the(ℓ − 1)-th level, is

the remainder determinant after allX-terms are removed by expansion. Summing the
∆k = Aℓ

k Cℓ
J−k, we obtain the formula announced in the lemma. �

As J varies, the formulas given by this lemma:

Cℓ
J = Cℓ−1

J + Cℓ
0A

ℓ
J + Cℓ

1A
ℓ
J−1 + · · ·+ Cℓ

J−1A
ℓ
1,

are still imperfect, for their right-hand sides still involve Jacobi-Trudy determinants at the
level ℓ. So necessarily, we must perform further reductions.

Lemma 5.3. For anyJ with 0 6 J 6 dim Xℓ and anyℓ with 1 6 ℓ 6 n, one has:

Cℓ
J =

J∑

j=0

Cℓ−1
J−j

( j∑

ν=1

∑

k1+···+kν=j

k1,...,kν>1

Aℓ
k1
· · ·Aℓ

kν

)
,

with the convention that forj = 0, the empty sum in parentheses equals1.

Proof. First, for J = 0, recall that by conventionCℓ
0 = Cℓ−1

0 = 1. Next, forJ = 1, we
start from the formula of the preceding lemma and we perform an evident computation:

Cℓ
1 = Cℓ−1

1 + Cℓ
0A

ℓ
1 = Cℓ−1

1 Σℓ
0(A) + Cℓ−1

0 Σℓ
1(A),

if, generally speaking, we denote for convenient abbreviation:

(19) Σℓ
j(A) :=

j∑

ν=1

∑

k1+···+kν=j

k1,...,kν>1

Aℓ
k1
· · ·Aℓ

kν
,

with of courseΣℓ
0(A) = 1. TheseΣℓ

j(A) satisfy useful induction formulas:

(20)

Σℓ
j(A) = Aℓ

j +

j∑

ν=2

∑

k1+k2+···+kν=j

k1,k2,...,kν >1

Aℓ
k1

Aℓ
k2
· · ·Aℓ

kν

= Aℓ
j +

j∑

ν=2

(
Aℓ

1

∑

k2+···+kν=j−1
k2,...,kν >1

Aℓ
k2
· · ·Aℓ

kν
+ Aℓ

2

∑

k2,...,kν=j−2
k2,...,kν >1

Aℓ
k2
· · ·Aℓ

kν
+

+ · · ·+ Aℓ
j−1

∑

k2+···+kν=1
k1,...,kν >1

Aℓ
k2
· · ·Aℓ

kν

)

= Aℓ
j + Aℓ

1

j−1∑

ν=2

∑

k2+···+kν=j−1
k2,...,kν >1

Aℓ
k2
· · ·Aℓ

kν
+ Aℓ

2

j−2∑

ν=2

∑

k2+···+kν=j−2
k2,...,kν >1

Aℓ
k2
· · ·Aℓ

kν
+

+ · · ·+ Aℓ
j−1

2∑

ν=2

∑

k2=1
k2>1

Aℓ
k2

= Aℓ
jΣ

ℓ
0(A) + Aℓ

1 Σℓ
j−1(A) + Aℓ

2Σ
ℓ
j−2(A) + · · ·+ Aℓ

j−1Σ
ℓ
1(A).
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Next, for J = 2, starting again from the known (imperfect) formula and using what has
just been seen:

Cℓ
2 = Cℓ−1

2 + Cℓ
0A

ℓ
2 + Cℓ

1A
ℓ
1

= Cℓ−1
2 + Cℓ−1

0 Aℓ
2 +

[
Cℓ−1

1 Σℓ
0(A) + Cℓ−1

0 Σℓ
1(A)

]
Aℓ

1

= Cℓ−1
2 Σℓ

0(A) + Cℓ−1
1

[
Σℓ

0(A)Aℓ
1

]
+ Cℓ−1

0

[
Σℓ

1(A)Aℓ
1 + Aℓ

2

]

= Cℓ−1
2 Σℓ

0(A) + Cℓ−1
1 Σℓ

1(A) + Cℓ−1
0 Σℓ

2(A).

Suppose now by induction that we have already proved that:

Cℓ
J ′ = Cℓ−1

J ′ Σℓ
0(A) + Cℓ−1

J ′−1Σ
ℓ
1(A) + Cℓ−1

J ′−2Σ
ℓ
2(A) + · · ·+ Cℓ−1

0 Σℓ
J(A),

for all J ′ with 0 6 J ′ 6 J , for someJ > 2. Then we apply the known general (imperfect)
formula withJ replaced byJ + 1 in it, and afterwards, we use the induction hypothesis,
which gives:

Cℓ
J+1 = C

ℓ−1
J+1 + Cℓ

0A
ℓ
J+1 + Cℓ

1A
ℓ
J + · · ·+ Cℓ

J−1A
ℓ
2 + Cℓ

JAℓ
1

= C
ℓ−1
J+1Σ

ℓ
0(A)+

+
[
C

ℓ−1
0 Σℓ

0(A)
]
Aℓ

J+1+

+
[
Cℓ−1

1 Σℓ
0(A) + Cℓ−1

0 Σℓ
1(A)

]
Aℓ

J+

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·+

+
[
C

ℓ−1
J−1Σ

ℓ
0(A) + C

ℓ−1
J−2Σ

ℓ
1(A) + C

ℓ−1
J−3Σ

ℓ
2(A) + · · ·+ C

ℓ−1
0 Σℓ

J−1(A)
]
Aℓ

2+

+
[
C

ℓ−1
J Σℓ

0(A) + C
ℓ−1
J−1Σ

ℓ
1(A) + C

ℓ−1
J−2Σ

ℓ
2(A) + · · ·+ C

ℓ−1
1 Σℓ

J−1(A) + C
ℓ−1
0 Σℓ

J(A)
]
Aℓ

1.

A necessary and natural reorganization then gives:

Cℓ
J+1 = C

ℓ−1
J+1

[
Σ0(A)

]
+

+ C
ℓ−1
J

[
Σℓ

0(A)Aℓ
1

]
+

+ Cℓ−1
J−1

[
Σℓ

1(A)Aℓ
1 + Σℓ

0(A)Aℓ
2

]
+

+ Cℓ−1
J−2

[
Σℓ

2(A)Aℓ
1 + Σℓ

1(A)Aℓ
2 + Σℓ

0(A)Aℓ
3

]
+

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·+

+ C
ℓ−1
0

[
Σℓ

J (A)Aℓ
1 + Σℓ

J−1(A)Aℓ
2 + Σℓ

J−2(A)Aℓ
3 + · · ·+ Σℓ

0(A)Aℓ
J+1

]

= C
ℓ−1
J+1Σ

ℓ
0(A) + C

ℓ−1
J Σℓ

1(A) + C
ℓ−1
J−1Σ

ℓ
2(A) + C

ℓ−1
J−2Σ

ℓ
3(A) + · · ·+ C

ℓ−1
0 Σℓ

J+1(A),

where at the end, one applies the formulas (20) just seen. Notice passimthat the number
of terms inΣℓ

j(A) is equal to2j−1 for all j > 1. �

5.2. Upper reduction operator. The reduction process, after several elimination com-
putations involving (15) and (16) and at the end (8), transforms a general monomial of
the formhlui1

1 · · · u
in
n with l + i1 + · · · + in = n2 into a polynomialR

(
hlui1

1 · · · u
in
n

)
of

degree6 n + 1 in d, where the symbol “R” stands for “reduction”.
From now on, complete explicit algebraic computations willnot be conducted anymore,

and instead, to tame their complexity,inequalitieswill be dealt with.
For our majoration purposes, we now introduce an importantupper reduction operator

R+ which by definition, at each computational step of the reduction process, while going
down in the Demailly’s tower, always replaces any incoming sign “−” by a sign “+”.

Accordingly, for any two monomialshlui1
1 · · · u

in
n andhl′u

i′1
1 · · · u

i′n
n , we shall say that:

R+
(
hlui1

1 · · · u
in
n

)
6R+

(
hl′u

i′1
1 · · · u

i′n
n

)
,
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and write more briefly:

hlui1
1 · · · u

in
n 6R+ hl′u

i′1
1 · · · u

i′n
n ,

if the corresponding two (upper) reduced polynomials
∑n+1

k=0 pk · d
k and

∑n+1
k=0 p′k · d

k

have all their coefficients satisfying:
(
0 6

)
pk 6 p′k for every k = 0, 1, . . . , n + 1.

Then obviously the absolute values of the coefficients of thereduction are smaller than the
(nonnegative) coefficients of the upper reduction:

∣∣coeffdk

[
hlui1

1 · · · u
in
n

]∣∣ 6 coeffdk

[
R+

(
hlui1

1 · · · u
in
n

)]
.

To obtain the desired boundn4n3
2n4

we need to handle the Jacobi-Trudy determinants
seen above. The following lemma will be useful.

Lemma 5.4. For anyλ1, λ2, . . . , λn with n = λ1 + 2λ2 + · · ·+ nλn, one has:

cλ1
1

(
C0

2

)λ2 · · ·
(
C0

n

)λn
6R+ C0

n .

Proof. An inspection of the determinantC0
n shows that one may view all the pure monomi-

alscλ1
1 ,

(
C0

2

)λ2 , . . . ,
(
C0

k

)λk as diagonal subblocks of the corresponding sizes lying inside
C0

n. Since the operatorR+ expands the determinants and replaces all the minus signs by
plus signs, it is then clear that there are more terms in the right-hand side than there are in
the left-hand side, which completes the proof. �

The same arguments yield determinantal inequalities at anylevel.

Lemma 5.5. For any twoJ1, J2 with 0 6 J1, J2 6 dim Xℓ satisfying in additionJ1 +
J2 6 dim Xℓ, and for anyj1 with 0 6 j1 6 n satisfying in additionj1 + J2 6 dim Xℓ,
one has the two majorations:

R
+

`

Ωℓ
K · C

ℓ
J1

· C
ℓ
J2

´

6 R
+

`

Ωℓ
K · C

ℓ
J1+J2

´

and R
+

`

Ωℓ
K · c

[ℓ]
j1

· C
ℓ
J2

´

6 R
+

`

Ωℓ
K · C

ℓ
j1+J2

´

,

whereΩℓ
K is any(K,K)-form living onXℓ completing todim Xℓ the degree, namely with

K + J1 + J2 and withK + j1 + J2 both equal todimXℓ.

If J1 + J2 < 0 or if J1 + J2 > dim Xℓ, and ifj1 + J2 < 0 or if j1 + J2 > dim Xℓ, the
two sides vanish in both inequalities, which hence hold without restriction.

Lemma 5.6. These coefficientsλj,j−k = (n−k)!
(j−k)! (n−j)! −

(n−k)!
(j−k−1)!(n−j+1)! appearing

in (15) satisfy the uniform majoration:
∣∣λj,j−k

∣∣ 6 2n =: λ

expressed in terms of the dimensionn only.

Proof. Indeed, the absolute value of the differenceλj,j−k = λ′
j,j−k − λ′′

j,j−k of two non-
negative integers is less than the largest one, and we majorate any appearing binomial
coefficient n′!

i′! (n′−i′)! or n′′!
i′′! (n′′−i′′)! with n′ 6 n andn′′ 6 n plainly by2n. �

In the subsequent majorations, while applying the upper majoration operatorR+, we
shall also replace any incomingλj,j−k by this majorantλ = 2n. As a result, we define
a generalized upper majoration operator “R+

λ ” which both replaces any minus sign by a
plus sign and anyλj,j−k by λ = 2n.

Also, when executing inequalities, we shall sometimes not write the left differential
form Ωℓ

K which completes todimXℓ the total degree of the considered forms, for one
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knows well now that forms to be reduced always have degree equal to the dimension of
the level on which they sit, unless they vanish identically for degree-form reasons.

Lemma 5.7. For all k = 1, 2, . . . , n, one has theR+
λ majorations:

Aℓ
k 6

R
+
λ

kλ
(
Cℓ−1

k−1uℓ + Cℓ−1
k−2u

2
ℓ + · · ·+ uk

ℓ

)
.

Proof. Starting from the evident majoration of theXℓ
j that were defined at the end of

Lemma 5.2:
Xℓ

j 6
R

+
λ

λ
(
c
[ℓ−1]
j−1 uℓ + c

[ℓ−1]
j−2 u2

ℓ + · · ·+ uj
ℓ

)
,

we may perform majorations of an arbitraryAℓ
k also defined there:

Aℓ
k = Xℓ

1C
ℓ−1
k−1 − Xℓ

2C
ℓ−1
k−2 + Xℓ

3C
ℓ−1
k−3 − · · ·+ (−1)k−1Xℓ

kC
ℓ−1
0

6
R

+
λ

[
λuℓ

]
C

ℓ−1
k−1 +

[
λ
(
c
[ℓ−1]
1 uℓ + u2

ℓ

)]
C

ℓ−1
k−2 +

[
λ
(
c
[ℓ−1]
2 uℓ + c

[ℓ−1]
1 u2

ℓ + u3
ℓ

)]
C

ℓ−1
k−3+

+ · · ·+
[
λ
(
c
[ℓ−1]
k−1 uℓ + · · ·+ c

[ℓ−1]
1 uk−1

ℓ + uk
ℓ

)]
C

ℓ−1
0

= λ
(
uℓ

[
Cℓ−1

k−1 + c
[ℓ−1]
1 Cℓ−1

k−2 + c
[ℓ−1]
2 Cℓ−1

k−3 + · · ·+ c
[ℓ−1]
k−1 Cℓ−1

0

]
+

+ u2
ℓ

[
Cℓ−1

k−2 + c
[ℓ−1]
1 Cℓ−1

k−3 + · · ·+ c
[ℓ−1]
k−2 Cℓ−1

0

]
+

+ u3
ℓ

[
Cℓ−1

k−3 + · · ·+ c
[ℓ−1]
k−3 Cℓ−1

0

]
+

+· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·+

+ uk
ℓ

[
Cℓ−1

0

])
.

Now, we use the majoration of an arbitrary product of a Jacobi-Trudy determinant by a
Chern class that was provided in advance by Lemma 5.5 to obtain:

Aℓ
k 6

R
+
λ

λ
(
uℓ

[
k · Cℓ−1

k−1

]
+ u2

ℓ

[
(k − 1) · Cℓ−1

k−2

]
+ · · · + uk

ℓ

[
Cℓ−1

0

])

6
R

+
λ

kλ
(
Cℓ−1

k−1uℓ + Cℓ−1
k−2u

2
ℓ + · · ·+ uk

ℓ

)
,

as was to be proved. �

We now have to majorate conveniently theA-polynomialsΣℓ
j(A) defined by (19) in

terms of Jacobi-Trudy determinants living at the inferior level ℓ − 1, and in terms ofuℓ,
too. For this purpose, let us define what will play the role of aconvenient majorant:

Θℓ
k := Cℓ−1

k−1uℓ + Cℓ−1
k−2u

2
ℓ + · · ·+ Cℓ−1

1 uk−1
ℓ + uk

ℓ ,

and let us keep in mind that the lemma just proved provided themajorationsAℓ
k 6

R
+
λ

kλΘℓ
k. To majorate products ofAℓ

k’s, we majorate products ofΘℓ
k ’s.

Lemma 5.8. For anyk1, k2, . . . , kν with k1, k2, . . . , kν > 1 whose sumk1 + k2 + · · · +
kν = j equalsj, one has the majoration:

Θℓ
k1

Θℓ
k2
· · ·Θℓ

kν
6

R
+
λ

k1k2 · · · kν Θℓ
k1+k2+···+kν

.

Proof. In greater length, the considered product writes:
(
Cℓ−1

k1−1uℓ + · · · + uk1
ℓ

)(
Cℓ−1

k2−1uℓ + · · ·+ uk2
ℓ

)
· · ·

(
Cℓ−1

kν−1uℓ + · · ·+ ukν

ℓ

)
,

and the total number of terms, after expansion, is hence clearly 6 k1k2 · · · kν . Using the
already known inequalityCℓ−1

J1
· Cℓ−1

J2
6

R
+
λ

Cℓ−1
J1+J2

, we may majorate as follows any
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monomial appearing after expansion:

Cℓ−1
k′
1

Cℓ−1
k′
2
· · ·Cℓ−1

k′
ν

uk′′

ℓ 6
R

+
λ

Cℓ−1
k′
1+···+k′

ν
uk′′

ℓ ,

wherek′
1 + k′

2 + · · ·+ k′
ν + k′′ = k1 + k2 + · · ·+ kν = j of course, which completes the

proof. �

At last, we can state and prove the main useful majoration proposition which will enable
us to achieve the proof of Theorem 5.1,cf. the program launched just before Lemma 5.2.

Proposition 5.1. At any levelℓ with1 6 ℓ 6 n−1, consider the Jacobi-Trudy determinant
Cℓ

J of an arbitrary sizeJ × J with 1 6 J 6 dim Xℓ and furthermore, letΩℓ
K be any

(K,K)-form onXℓ the degreeK of which satisfiesK + J = dim Xℓ = n + ℓ(n − 1).
Then the upper reductionR+

λ (•) of Ωℓ
KCℓ

J in which any incomingλj,j−k is replaced by
λ = 2n >

∣∣λj,j−k

∣∣ enjoys the following majoration in the right-hand side of which,
notably, all the appearing Jacobi-Trudy determinants liveat levelℓ− 1:

Ωℓ
KCℓ

J 6
R

+
λ

J · 2J · J2J · 2nJ · Ωℓ
K

[
Cℓ−1

J + Cℓ−1
J−1uℓ + · · ·+ Cℓ−1

1 uJ−1
ℓ + uJ

ℓ

]
.

Proof. Recall that

Cℓ
J =

J∑

j=1

Cℓ
J−j Σℓ

j(A) =

J∑

j=0

Cℓ−1
J−j

( j∑

ν=1

∑

k1+···+kν=j

k1,...,kν>1

Aℓ
k1
· · ·Aℓ

kν

)
.

Using the last two lemmas, we deduce that for anyk1, . . . , kν > 1 with k1 + · · ·+ kν the
sum of whichk1 + · · · + kν equalsj, we have the majoration:

Aℓ
k1
· · ·Aℓ

kν
6

R
+
λ

k1 · · · kν λν Θℓ
k1
· · ·Θℓ

kν
[Lemma 5.7]

6
R

+
λ

(
k1 · · · kν

)2
λν Θℓ

k1+···+kν
[Lemma 5.8]

6
R

+
λ

j2j λj Θℓ
j.

Since there are2j−1 6 2j terms in the sum
∑j

ν=1

∑
k1+···+kν=j

k1,...,kν>1
, we receive the useful

majoration:

Σℓ
j(A) =

j∑

ν=1

∑

k1+···+kν=j

k1,...,kν>1

Aℓ
k1
· · ·Aℓ

kν

6
R

+
λ

2j j2j λj Θℓ
j.
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In conclusion, starting from Lemma 5.3 and using Lemma 5.5, we may lastly perform the
following (not optimal) majoration:

Cℓ
J = Cℓ−1

J + Cℓ−1
J−1Σ

ℓ
1(A) + Cℓ−1

J−2Σ
ℓ
2(A) + · · ·+ Cℓ−1

J−jΣ
ℓ
j(A) + · · ·+ Cℓ−1

0 Σℓ
J(A)

6
R

+
λ

Cℓ−1
J + Cℓ−1

J−1 2112λ1
[
uℓ

]
+ Cℓ−1

J−22
224λ2

[
Cℓ−1

1 uℓ + u2
ℓ

]

+ · · ·+ Cℓ−1
J−j 2jj2jλj

[
Cℓ−1

j−1uℓ + · · ·+ uj
ℓ

]

+ · · ·+ Cℓ−1
0 2JJ2JλJ

[
Cℓ−1

J−1uℓ + · · ·+ uJ
ℓ

]

6
R

+
λ

2112λ1
[
Cℓ−1

J + Cℓ−1
J−1uℓ

]
+ 2224λ2

[
Cℓ−1

J−1uℓ + Cℓ−1
J−2u

2
ℓ

]

+ · · ·+ 2jj2jλj
[
Cℓ−1

J−1uℓ + · · ·+ Cℓ−1
J−ju

j
ℓ

]

+ · · ·+ 2JJ2JλJ
[
Cℓ−1

J−1uℓ + · · ·+ uJ
ℓ

]

6
R

+
λ

J · 2J · J2J · λJ
[
Cℓ−1

J + Cℓ−1
J−1uℓ + Cℓ−1

J−2u
2
ℓ + · · ·+ Cℓ−1

1 uJ−1
ℓ + uJ

ℓ

]
,

where the introduction of supplementary terms in the brackets aims at producing a uniform
right-hand side. �

5.3. Proof of Theorem 5.1. The vanishing of thed0-coefficient comes from the fact that
after reduction to the ground levelℓ = 0, one gets a sum of homogeneous monomials of
the formhlcλ1

1 cλ2
2 · · · c

λn
n with l + λ1 + 2λ2 + · · · + nλn = n, and then after expressing

eachck in terms ofd through (8), one always has the powerhn = d of h in factor.
Notice that the integerJ of the Proposition 5.1 will always be less than or equal to

dimXn−1 = n2 − n + 1. To simplify the computations and to receive at the end as
simple majorants as possible, we shall apply the following elementary majoration, using
J 6 n2 − n + 1:

J · 2J · J2J · 2nJ = 2(n+1)J · J2J+1

6 2n3+1 (n2 − n + 1)2n2−2n+3

6 2n3(
n2

)2n2

,

because2 (n2−n + 1)2n2−2n+3 6 2 (n2)2n2−2n+3 6 (n2)2n2
for anyn > 2 (an assump-

tion of Theorem 5.1). Let us temporarily denote this bound by:

N := 2n3
n4n2

.
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As expected, we can now perform a uniform upper majoration ofan arbitrary monomial
ui1

1 · · · u
in
n with i1 + · · ·+ in = n2 down to levelℓ = 0 as follows:

ui1
1 · · ·u

in−1

n−1 uin
n = ui1

1 · · ·u
in−1

n−1 C
n−1
in−n+1

6
R

+
λ

N · ui1
1 · · ·u

in−2

n−2 u
in−1

n−1

[
Cn−2

in−n+1 + Cn−2
in−nun−1

+ · · ·+ Cn−2
1 uin−n

n−1 + uin−n+1
n−1

]
[Proposition 5.1]

6
R

+
λ

N · ui1
1 · · ·u

in−2

n−2

[
C

n−2
in−n+1u

in−1

n−1 + · · ·
◦

+ Cn−2
in−1+in−2n+2 un−1

n−1R

+ · · ·+ u
in−1+in−n+1
n−1

]

6
R

+
λ

N · ui1
1 · · ·u

in−2

n−2

[
Cn−2

in−1+in−2n+2 + Cn−2
in−1+in−2n+1 un

n−1

+ · · ·+ u
in−1+in−n+1
n−1

]

6
R

+
λ

N · ui1
1 · · ·u

in−2

n−2

[
Cn−2

in−1+in−2n+2 + Cn−2
in−1+in−2n+1 Cn−2

1

+ · · ·+ C
n−2
in−1+in−2n+2

]
[Lemma 5.1]

6
R

+
λ

N n2 · ui1
1 · · ·u

in−2

n−2 C
n−2
in−1+in−2n+2 [Lemma 5.5]

6
R

+
λ

(
N n2

)2
· ui1

1 · · ·u
in−3

n−3 Cn−3
in−2+in−1+in−3n+3 [induction]

6
R

+
λ

(
N n2

)3
· ui1

1 · · ·u
in−4

n−4 Cn−4
in−3+in−2+in−1+in−4n+4 [induction].

In the third line, we exhibit the general case wherein−1 can be< n− 1, we underline the
terms vanishing for degree-form reasons and we point out thefiber-integration ofun−1

n−1;
whenin−1 > n−1, the underlined terms are absent. In the sixth line, we majorate plainly
by n2 the number of terms inside the brackets. (Recall that here byconvention again,
Cℓ

J = 0 if either J < 0 or J > dim Xℓ, so that some of the writtenCℓ
J might well vanish,

depending oni1, . . . , in.) A now clear induction down to levelℓ = 1 therefore yields:

ui1
1 · · ·u

in−1

n−1 uin
n 6

R
+
λ

(
N n2

)n−2
· ui1

1 C1
i2+···+in−(n−1)n+n−1

6
R

+
λ

(
N n2

)n−2
· N ·

[
C0

2n−1−i1
+ · · ·

◦

+

+ C0
nun−1

1 R + · · ·+ u2n−1
1

]

6
R

+
λ

(
N n2

)n−1
C0

n.

It only remains to majorateC0
n. This last reduction using only (8) without anyλj,j−k, let

us denote byR+
d the upper reduction operator restricted to levelℓ = 0.

Lemma 5.9. Then× n Jacobi-Trudy determinantCn
0 enjoys the majoration:

C0
n 6

R
+
d

2n2+2n n!nn
[
dn+1 + dn + · · ·+ d

]
.

Proof. The number of monomials in the universaln × n determinant|aj
i | is 6 n! (and is

< n! when someaj
i are zero). Hence:

C0
n 6

R
+
d

n! max
λ1+2λ2+···+nλn=n

cλ1
1 cλ2

2 · · · c
λn
n .

The general binomial coefficient
(n+2

k

)
which appears in (8) is less than or equal to2n+2,

so that:

cj 6
R

+
d

2n+2 hj
[
dj + · · · + d + 1

]
.
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We majorate as follows the products of these basic polynomials in d:
[
dj1 + · · ·+ d + 1

][
dj2 + · · ·+ d + 1

]
6

R
+
d

j1j2

[
dj1+j2 + · · · + d + 1

]
,

and we therefore deduce a majorant for the general homogeneous degreen monomial in
the ground Chern classes:

cλ1
1 cλ2

2 · · · c
λn
n 6

R
+
d

(
2n+2

)λ1+λ2+···+λn 1λ12λ2 · · ·nλn hλ1+2λ2+···+nλn

·
[
dλ1+2λ2+···+nλn + · · ·+ d + 1

]

6
R

+
d

(
2n+2

)n
nλ1+λ2+···+λn hn

[
dn + · · · + d + 1

]

6
R

+
d

2n2+2n nn d
[
dn + · · ·+ d + 1

]

which completes the proof. �

Applying this lemma to the last obtained inequality:

ui1
1 · · · u

in
n 6

R
+
λ

(Nn2)n−1 2n2+2n n!nn ·
[
dn+1 + dn + · · ·+ 1],

we then obtain the announced boundn4n3
2n4

as follows:
∣∣coeffdk

[
ui1

1 · · · u
in
n

]∣∣ 6
(
2n3

n4n2
n2

)n−1
2n2+2n n!nn

6 2n4−n3+n2+2n n4n3−4n2+2n−2 nn nn

6 n4n3
2n4

.

By an inspection of the final inequalities which enabled us todescend from the top of
Demailly’s tower to its ground level, one easily convinces oneself that the monomials
hlui1

1 · · · u
in
n andc1h

luj1
1 · · · u

jn
n satisfy exactly the same upper bound reduction:

hlui1
1 · · · u

in
n 6

R
+
λ

(
N n2

)n−1
C0

n and

c1h
luj1

1 · · · u
jn
n 6

R
+
λ

(
N n2

)n−1
C0

n,

since the formshl andc1h
l do intervene only at the very end of the process. This com-

pletes the proof of Theorem 5.1. At the same time, Theorem 1.1is done. �

6. EFFECTIVE BOUNDS IN DIMENSIONS4 AND 5
THROUGH THE INVARIANT THEORY APPROACH

The goal of this section is to obtain sharper effective bounds on the minimal degree of
generic hypersurfacesX ⊂ Pn+1 such that the strong Green-Griffiths conjecture is true,
using Demailly’s invariants ([4, 5, 16, 14]). Indeed, it turns out that a good knowledge of
the full algebra of germs of invariantk-jet differentials at a pointx ∈ X:

An
k =

⊕

m>0

Ek,mT ∗
X,x

provides better bounds than the approach which uses the intersection product (11).
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6.1. Algebras of invariant k-jet differentials. Up to now,An
n is understood only for

n 6 4; it is known to be finitely generated by an explicit set of generators in dimensions
n = 1, 2, 3, 4, but not in any dimensionn > 5. The difficulty in studyingAn

n comes,
among other things, from the fact that it is an algebra of polynomials invariant under a
certain unipotent action, therefore not a reductive one (cf. [16, 14]). Let(x1, . . . , xn) be
local coordinates centered atx ∈ X and letf = (f1, . . . , fn) : (C, 0)→ (X,x) be a germ
of holomorphic curve.

Theorem 6.1. The following three algebraic descriptions hold.

• [4] In dimension2, A2
2 = C

[
f ′
1, f ′

2, f
′
1f

′′
2 − f ′′

1 f ′
2

]
.

• [16] In dimension3,

A3
3 = C

[
f ′

i , wij , wk
ij ,W

]
,

where the indices satisfy1 6 i < j 6 3 and 1 6 k 6 3, whereW is the
3-dimensional Wronskian:

W :=

∣∣∣∣∣∣

f ′
1 f ′

2 f ′
3

f ′′
1 f ′′

2 f ′′
3

f ′′′
1 f ′′′

2 f ′′′
3

∣∣∣∣∣∣
,

and where:

wij := f ′
if

′′
j − f ′′

i f ′
j, wk

ij := f ′
k

[
f ′

if
′′′
j − f ′′′

i f ′
j

]
− 3f ′′

k

[
f ′

if
′′
j − f ′′

i f ′
j

]
.

• [14] In dimension4, the algebraA4
4 is finitely generated by2835 explicit poly-

nomials. Moreover, there are16 fundamental, mutually independent bi-invariant
polynomials sharing41 (gröbnerized) syzygies.

The result in dimension2 rapidly follows from the observation that in this case the
underlying group action is the action of the complete unipotent group whose algebra of
invariants is classically known to be constituted of the Plückerian algebra, whence the
appearance of the Wronskian. Dimensions3 and4 were obtained using nontrivial invariant
theory. Observe that the complexity of the algebra of invariants increases dramatically as
soon asn > 4. In [14], one finds a complete algorithm to generate all Demailly-Semple
invariants in arbitrary dimensionn > 1 and for arbitrary jet orderk > 1.

6.2. Riemann-Roch computations.Remember from Theorem 2.2 that the first step to-
wards the algebraic degeneracy of entire curvesf : C → X consists in proving the
existence of nonzero global sections ofH0

(
X, Ek,mT ∗

X ⊗ A−1
)
, for some ample line

bundle A → X. So one basic strategy is to firstly compute the Euler characteristic
χ
(
X, Ek,mT ∗

X

)
and secondly, to control the even cohomology groupsH2i(X, Ek,mT ∗

X)
for i > 1.

Granted the algebraic results described above, one can achieve this strategy up to di-
mension4. Indeed, one deduces from the characterization ofAn

n the following decompo-
sition ofGr• En,mT ∗

X into irreducible Schur representationsΓλT ∗
X .

Theorem 6.2. LetX be a compact complex manifold and letm ∈ N.

• [4] If dim X = 2 then

Gr• E2,mT ∗
X =

⊕

06j6m/3

Sm−3jT ∗
X ⊗Kj

X .
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• [16] If dim X = 3 then

Gr• E3,mT ∗
X =

⊕

a+3b+5c+6d=m

Γ(a+b+2c+d,b+c+d,d)T ∗
X .

• [14] If dim X = 4 then

Gr• E4,mT ∗
X =

⊕

(a,b,...,n)∈N14\(�1∪···∪�41)
o+3a+···+21n+10p=m

Γ




o + a + 2b + 3c + d + 2e + 3f + 2g + 2h + 3i + 4j + 3k + 3l + 4m′ + 5n + p

a + b + c + d + e + f + 2g + 2h + 2i + 2j + 2k + 3l + 3m′ + 3n + p

d + e + f + h + i + j + 2k + 2l + 2m′ + 2n + p

p


T ∗

X ,

where the 41 subsets�i, i = 1, 2, . . . , 41, of N14 ∋ (a, b, . . . , l,m′, n) are explic-
itly defined in[14].

Then with electronic assistance, one can perform Euler-Poincaré characteristics com-
putations.

Theorem 6.3. LetX ⊂ Pn+1 be a smooth hypersurface of degreed.

• [4] For n = 2:

χ(X,E2,mT ∗
X) =

m4

648
d

(
4d2 − 68d + 154

)
+ O(m3).

• [16] For n = 3:

χ
(
X, E3,mT ∗

X

)
=

m9

81648 × 106
d

(
389d3 − 20739d2 + 185559d − 358873

)

+ O(m8).

• [14] For n = 4:

χ
`

X, E4,mT
∗
X

´

=
m16

1313317832303894333210335641600000000000000
· d ·

·

`

50048511135797034256235 d
4
−

− 6170606622505955255988786 d
3
−

− 928886901354141153880624704 d+

+ 141170475250247662147363941 d
2+

+ 1624908955061039283976041114
´

+ O
`

m
15´

.

In order to prove the existence of nonzero elements inH0(X,E4,mT ∗
X), we must con-

trol the higher cohomology groups. In dimension2, this is achieved using the following
vanishing theorem of Bogomolov.

Theorem 6.4([2]). If X is a smooth projective surface of general type, then:

H2
(
X, SmT ∗

X

)
= 0

for all m > 3.

It has been shown by the third-named author [17] that in dimension 3,
H2

(
X, E3,mT ∗

X

)
6= 0 does not vanish. Fortunately, a suitable majoration holds.
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Proposition 6.1([17]). LetX be a smooth hypersurface of degreed in P4. Then:

h2
(
X,Γ(λ1,λ2,λ3)T ∗

X)

6 d(d + 13)
3(λ1 + λ2 + λ3)

3

2
(λ1 − λ2)(λ1 − λ3)(λ2 − λ3) + O(|λ|5).

In dimension4 the same proof provides the new estimate:

Proposition 6.2. LetX be a smooth hypersurface of degreed in P5. Then:

h2
(
X, Γ(λ1,λ2,λ3,λ4)T ∗

X

)

6
1

80
d (λ1 − λ2)(λ1 − λ3)(λ1 − λ4)(λ2 − λ3)(λ2 − λ4)(λ3 − λ4)

·
(
λ1 + λ2 + λ3 + λ4

)2[
5λ2λ1d

2 + 132λ2λ1d + 132λ1λ3d + 5λ2λ3d
2

+ 132λ2λ4d + 5λ2d
2λ4 + 132λ1λ4d + 5λ3λ4d

2 + 5λ1λ3d
2

+ 132λ3λ4d + 132λ2λ3d + 1308λ2λ1 + 648λ2
2 + 648λ2

3

+ 72λ2
3d + 648λ2

1 + 72λ2
1d + 1308λ1λ4 + 5λ1d

2λ4 + 1308λ2λ4

+ 1308λ2λ3 + 648λ2
4 + 72λ2

2d + 1308λ1λ3 + 72λ2
4d + 1308λ3λ4

]

+ O
(
|λ|9

)
.

We do not have to care abouth4
(
X, Γ(λ1,λ2,λ3,λ4)T ∗

X

)
since we have the following

vanishing theorem which generalizes Bogomolov’s vanishing theorem.

Theorem 6.5 ([4]). Let X be a projective algebraic manifold,n = dim X, and let
L be a holomorphic line bundle overX. Assume thatKX is big and nef and let
a = (a1, . . . , an) ∈ Zn, a1 > · · · > an, be a weight. If eitherL is pseudo-effective
and |a| =

∑
aj > 0, or L is big and|a| > 0, then:

H0(X,ΓaTX ⊗ L∗) = 0.

From such controls of higher cohomology groups, one deducesexistence of global
algebraic differential equations canalizing all entire holomorphic maps. For the sake of
completeness, we recall here what is known in dimensions2 and3.

Theorem 6.6. Let X ⊂ Pn+1 be a smooth hypersurface of degreed and letA be any
ample line bundle overX.

• [4] For n = 2:

h0
(
X, E2,mT ∗

X ⊗ O(−A)
)

>
m4

648
d

(
4d2 − 68d + 154

)
+ O(m3);

• [17] For n = 3:

h0
(
X, E3,mT ∗

X ⊗ O(−A)
)

>
m9

408240000000
· d ·

(
1945 d3 − 103695 d2

− 7075491 d − 105837083
)

+ O(m8).

In particular, if d > 15 (resp.d > 97) thenE2,mT ∗
X ⊗O(−A) (resp.E3,mT ∗

X ⊗O(−A))
admits non trivial sections form large, and every entire curvef : C→ X must satisfy the
corresponding algebraic differential equations.

In dimension4, we therefore present the following new result.
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Theorem 6.7. LetX be a smooth hypersurface of degreed in P5 and letA be any ample
line bundle overX. Then:

h0(X,E4,mT ∗

X ⊗ O(−A))

>
m16

1313317832303894333210335641600000000000000
· d

·
[
− 867659678949860838548185438614

− 93488069360760785094059379216 d

− 1369327265177339103292331439 d2

− 6170606622505955255988786 d3

+ 50048511135797034256235 d4
]

+ O
(
m15

)
.

In particular, if d > 259 thenE4,mT ∗
X ⊗ O(−A) admits non trivial sections form large,

and every entire curvef : C → X must satisfy the corresponding algebraic differential
equations.

6.3. Effective algebraic degeneracy of entire curves.According to Theorem 2.5, in
dimensionn, the maximal pole order of a meromorphic frame on the space ofvertical
n-jets of the universal hypersurface parametrizing all degreed hypersurfaces ofPn+1 is
equal ton2 + 2n. Then one applies the same arguments as in [18], pp. 381–383 to the
Schur bundle decomposition provided in [14] and one uses themajoration for theh2 of
an arbitrary Schur bundle explicited above. As a result, thanks to effective computations
executed independently on two digital computers by the second and by the third named
author using different codes, one obtains in dimension4 the new effective lower bound
deg X > 3203 of Theorem 1.2.

Finally, for dimensions5 and 6, we simply carry out the same strategy as in the
general case, but with a choice of weight different froma∗ introduced in Subsec-
tion 4.4. Our choice specific for these two dimensions area = (54, 18, 6, 2, 1) and
a = (162, 54, 18, 6, 2, 1), that is to say: the minimal choice in order to have relative
nefness of the weighted (anti)tautological line bundleOXn(a), n = 5, 6 (cf. [4, 6]); also,
we chooseδ = 52+2·5

d−5−2 andδ = 62+2·6
d−6−2 . The bound is then obtained thanks to computer cal-

culations withGP/PARI, (cf. [6] for the code). The same method, in dimension 4 (resp. 3),
would have produceddeg X > 6527 (resp.> 1019), less sharp thandeg X > 3203
(resp.> 593).

In dimensionn = 5, here are the corresponding two polynomialsPa(d) andP′
a
(d) the

length of which confirms the incompressible complexity of the reduction process:

(21)

P54,18,6,2,1(d) = 82970555252684668951323755447424 d
6
−

− 69092357692382960198316008279615424 d
5
−

− 37591957313184629697218108831955927744 d
4
−

− 2161144497516080476955607837671278699584 d
3
−

− 20767931723173741117548555837243163806144 d
2
−

− 23736461779038166246115958304551871056384 d.
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and:

(22)

P
′
54,18,6,2,1(d) = −81064936492382180549906181650347200 d

6
−

− 25619265529443874657362851013713227200 d
5
−

− 1138360224016877254137407566642735778400 d
4
−

− 2649407942988198539201176162753240634400 d
3+

+ 70399558265933283202949942118101580280800 d
2+

+ 90355953106499854530169310985578945008800 d.

We believe that the sequence of weightsa = (2 · 3n−2, . . . , 6, 2, 1) instead ofa∗ should
work in any dimension, and that it should provide better effective estimates in all dimen-
sions, though we suspect the bound should remain exponential. To conclude, we collect
our three effective estimates in a comparative table

dim X Theorem 1.2 Theorem 1.1

3 593 235

4 3203 245

5 35355 255

6 172925 265
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