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Abstract. We verify the transcendental part of a conjecture of Campana predicting that the
rational points on the weakly-special non-special simply-connected smooth projective threefolds
constructed by Bogomolov–Tschinkel are not dense.

1. Introduction

A variety over a field k is a geometrically integral finite type separated scheme over k. A smooth
projective variety X over a field k is weakly-special if no finite étale cover of Xk dominates a

positive-dimensional projective variety of general type over k, where k is an algebraic closure of k.
Let X be a projective variety over a finitely generated field K of characteristic zero. Lang–Vojta’s

conjectures on rational points in [Lan86] predict that, if X(K) is dense, then X is weakly-special.
In [HT00, Conjecture 1.2] the following converse was proposed: if X is a weakly-special smooth
projective geometrically connected variety over a finitely generated field K of characteristic zero,
then there exists a finite field extension L/K such that X(L) is dense in X.

This conjecture is however in conflict with a series of conjectures introduced by Campana in his
seminal work on orbifold pairs and special varieties [Cam11, § 13.6]. Here we say that a smooth
projective variety X over a field k of characteristic zero with algebraic closure k is special if, for
every 1 ≤ p ≤ dim(X), the sheaf ΛpΩ1

Xk/k
does not contain a Bogomolov sheaf [Cam11]. Then,

for X a smooth projective variety over a finitely generated field K of characteristic zero, Campana
conjectured that XK is special if and only if there exists a finite field extension L/K such that
X(L) is dense in XL.

Note that Campana actually expanded on Lang–Vojta’s conjecture by putting forward the idea
that potential density of rational points on the smooth projective variety X should imply that the
variety X is special. This is stronger than Lang–Vojta’s conjecture which only predicts that X
is weakly-special. Indeed, Bogomolov–Tschinkel [BT04] famously constructed the first non-special
weakly-special varieties (see Section 8 for further properties of their threefolds):

Theorem 1.1 (Bogomolov–Tschinkel). There exists a smooth projective simply-connected weakly-
special threefold over C which is not special.

In [CP07], Campana and Păun slightly refined Bogomolov–Tschinkel’s construction and intro-
duced a class of smooth projective simply-connected weakly-special non-special threefolds for which
they could verify the analytic analogue of Campana’s conjectures. Namely, the threefolds they con-
sider do not have a dense entire curve (see also [Rou10, Theorem 6.11]). We will refer to their
threefolds as BTCP-threefolds; see Definition 8.1 for a precise definition. Our main result is an
arithmetic analogue of Campana–Păun’s aforementioned analytic result.

Theorem 1.2. Let X be a BTCP-threefold over a finitely generated field k of characteristic zero
and let V be a variety over k. Then the set of non-constant rational maps V X is not dense in
XK(V ).
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Theorem 1.2 can be reformulated geometrically as follows: if X is a BTCP-threefold over a
finitely generated field k of characteristic zero and V is a variety over k, then the union ∪fΓf of
graphs Γf with f : V X a non-constant rational map is not dense in X × V .

For X as in Theorem 1.2, the natural extension of Campana’s arithmetic conjectures (see [JR22,
Conjecture 1.6]) predicts that X(K(V )) is not dense in X. If we define X(K(V ))nc to be the
subset of K(V )-points which define a non-constant rational map V X, then our main result only
guarantees the non-density of the subset X(K(V ))nc in XK(V ). Referring to elements of X(K(V ))nc

as transcendental-rational K(V )-points, we see that Theorem 1.2 can be interpreted as saying that
the transcendental-rational points on a BTCP-threefold X are not dense.

Theorem 1.2 is one of the few results we have concerning the arithmetic discrepancy between
special and weakly-special varieties. Using different ideas and building on work of Corvaja–Zannier
[CZ04] and Ru-Vojta [RV20], other examples of weakly-special non-special threefolds were con-
structed in [RTW21]. However, the analogous arithmetic non-density statement for transcendental-
rational points on these threefolds remains currently unknown.

Theorem 1.2 is a consequence of a purely arithmetic finiteness result for rational points on moduli
spaces of orbifold maps (in the sense of Campana); we refer the reader to Theorem 2.7 for a precise
statement.

1.1. Outline of paper. To prove Theorem 1.2, we first reduce to the case that V is a smooth
projective curve using a standard cutting argument (Lemma 7.1). Then, as we explain in Section
8, every BTCP-threefold X is equipped with a non-isotrivial elliptic fibration onto some surface B
of Kodaira dimension one. Since this fibration is non-isotrivial, almost all of the composed maps
V → X → B will be non-constant by the isogeny theorem for elliptic curves over number fields
(Lemma 8.9). Thus, we are naturally led to studying curves on the Kodaira dimension one surface
B.

At this point it is imperative to note that the curves in B which “come from X” satisfy tangency
conditions with respect to the divisor D on B associated to the multiple fibers of X → B. To keep
track of these tangency conditions, it is natural to use Campana’s notion of an orbifold pair and
orbifold morphism (see Section 2). The main arithmetic finiteness result we prove for orbifolds in
this paper is Theorem 2.7.

Our first innovation is to study the subset H of non-constant maps from a curve C to a surface B
satisfying Campana-like tangency conditions inside the Hom-scheme parametrizing all morphisms
from C to B; we show that H is naturally a locally closed subset and that the universal evaluation
map C ×H → B also satisfies similar tangency conditions with respect to D (Theorem 3.8). That
is, the universal evaluation map “inherits” the orbifold properties from the maps it parametrizes.

To prove the non-density of the non-constant K(V )-points on X, we are therefore led to studying
Mordell-type properties of the moduli space H. In fact, we seek to establish the finiteness of its
K-rational points for every finitely generated field K of characteristic zero. The finiteness of K-
rational of H is achieved in three steps:

(1) By the theory of Hilbert schemes,H is a priori a countable union of quasi-projective schemes.
The first step of our proof consists of showing that the moduli space H is in fact quasi-
projective (i.e., of finite type). We prove this by generalizing Bogomolov’s theorem on
surfaces of general type with positive second Segre class to the setting of Campana’s orbifold
pairs (see Theorem 6.5).

(2) The second key observation is that the dimension of H is at most one (Corollary 4.6). Here
we combine arguments using Mori’s bend-and-break with the recently established “orbifold”
extension of the theorem of Kobayashi–Ochiai on dominant maps to a variety of general
type [BJ, Theorem 1.1]; see the proof of Lemma 4.2.

(3) To prove finiteness of K-points on H, we will appeal to Faltings’s theorem for hyperbolic
curves (formerly Mordell’s conjecture). To do so, we argue that every positive-dimensional
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component of H is birational to a curve of genus at least two. This part of the argument
crucially uses that B is a Kodaira dimension one surface whose associated elliptic fibration
is non-isotrivial (whereas the previous steps can be performed in a far more general setting);
see Theorem 5.4 for a precise statement.

Acknowledgements. We are grateful to Remke Kloosterman for helpful discussions on elliptic
fibrations and especially Remark 5.2.

2. Campana’s orbifold pairs

Recall that a variety over a field k is a geometrically integral finite type separated scheme over
k.

Definition 2.1. A Q-orbifold (over k) (X,∆) is a variety X together with a Q-Weil divisor ∆ on
X such that all coefficients of ∆ are in [0, 1]. If ∆ =

∑
i νi∆i is the decomposition of ∆ into prime

divisors, we say that m(∆i) := (1 − νi)−1 is the multiplicity of ∆i in ∆. If all multiplicities of a
Q-orbifold are in Z ∪ {∞}, we say that (X,∆) is an orbifold.

An important class of orbifold divisors are those associated to a fibration with multiple fibers
(see [Cam11, Definition 4.2]:

Definition 2.2 (Orbifold base). Let f : X → Y be a surjective morphism of normal varieties over
k with geometrically connected fibers. Assume Y is locally factorial. Then, we define the orbifold
divisor ∆(f) on Y as follows. Let D ⊂ Y be a prime divisor of Y . Let F1, . . . , Fr be the irreducible
divisors of X which map surjectively to D via f . We refer to irreducible divisors of X which do
not map surjectively to D via f as being f -exceptional. Then, we may write the scheme-theoretic
fiber of f over D as f∗D = R+

∑
k tk · Fk with R a sum of f -exceptional divisors of X (satisfying

f(R) ( D). For each irreducible Weil divisor D ⊂ Y , we define

mf (D) := inf{tk}.
We define the orbifold divisor ∆f of f to be

∆f :=
∑
D

(
1− 1

mf (D)

)
D,

where the sum runs over all prime divisors of Y . We refer to the orbifold (Y,∆f ) as the orbifold
base of f .

An orbifold (X,∆) is an orbifold curve (resp. orbifold surface) if dimX = 1 (resp. dimX = 2).
An orbifold (X,∆) is smooth if the underlying variety X is nonsingular and the support of the
orbifold divisor supp ∆ is a divisor with strict normal crossings. It is normal (resp. proper, resp.
projective) if X is normal (resp. proper over k, resp. projective over k).

Definition 2.3 (Morphisms). Let (X,∆X) be a normal Q-orbifold and (Y,∆Y ) be a Q-orbifold such
that Y is locally factorial. In this case, we define a morphism of Q-orbifolds f : (X,∆X)→ (Y,∆Y )
to be a morphism of varieties f : X → Y satisfying f(X) * supp ∆Y such that, for every prime
divisor E ⊆ supp ∆Y and every prime divisor D ⊆ supp f∗E, we have tm(D) ≥ m(E), where t ∈ Q
denotes the coefficient of D in f∗E; the local factoriality of Y ensures that E is a Cartier divisor,
so that f∗E is well-defined.

If X is a normal variety, we identify X with the orbifold (X, 0). If X and Y are varieties such
that X is normal and Y is locally factorial, every morphism of varieties X → Y is an orbifold
morphism (X, 0)→ (Y, 0).

We will be interested in rational maps satisfying the orbifold condition. To make this precise,
we follow [BJ] and work with orbifold near-maps.
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Definition 2.4. An open subscheme U ⊆ X of a variety X is big if its complement is of codimension
at least two. A rational map X Y of varieties is a near-map if there is a big open U ⊆ X such
that U Y is a morphism.

Note that a rational map X Y is a near-map if and only if it is defined at all codimension
one points of X. For example, for every normal variety X and any proper variety Y , every rational
map X Y is a near-map.

Definition 2.5. Let (X,∆X) be a normal Q-orbifold and (Y,∆Y ) be a Q-orbifold such that Y is
locally factorial. An orbifold near-map

f : (X,∆X) (Y,∆Y )

is a near-map f : X Y satisfying f(X) * supp ∆Y such that, for every prime divisor E ⊆ supp ∆Y

and every prime divisor D ⊆ supp f∗E, we have tm(D) ≥ m(E), where t ∈ Q denotes the coefficient
of D in f∗E; this pullback is well-defined as E is Cartier.

2.1. Chern classes. Let (X,∆) be a smooth projective orbifold surface. To state our main result,
we will need to define the Chern classes of (X,∆). Let ∆ =

∑
(1 − 1

mi
)∆i be the decomposition

into irreducible components. Let CH(X) be the Chow ring of X and let CHd ⊂ CH(X) denote the
subgroup of codimension d cycle classes.

Definition 2.6. We define

c1(X,∆) := −(KX + ∆) in CH1(X)⊗Q

c2(X,∆) := c2(X) +
∑
i

(
1− 1

mi

)
(KX + ∆i).∆i +

∑
i<j

(
1− 1

mimj

)
∆i.∆j in CH2(X)⊗Q.

We will be interested in the degrees of c1
2 and c2. Thus, we define:

c1(X,∆)2 := deg c1(X,∆)2 and c2(X,∆) := deg c2(X,∆) in Q.

If ∆ is the trivial divisor, then c1(X,∆) = c1(X) and c2(X,∆) = c2(X), where ci(X) is the i-th
Chern class of TX , so that we recover the “usual” Chern classes of X. If the multiplicities of ∆ are
all infinite, then ci(X,∆) = ci(TX(− log ∆)), so that we recover the Chern classes of the log-pair
(X,∆). If D is a prime divisor on X and ∆ =

(
1− 1

m

)
D with m ≥ 1, then the (numerical) Chern

classes of (X,∆) defined above are the (numerical) Chern classes of TX , where X := m
√
X/D is the

m-th root stack of X along D.

2.2. Main result. Our main arithmetic finiteness result for orbifold surfaces is as follows (and is
proven in Section 7).

Theorem 2.7. Let (B,∆) be a smooth projective orbifold of general type over a finitely generated
field K of characteristic zero, where B is a Kodaira dimension one surface with non-isotrivial
elliptic fibration. If c1(B,∆)2 > c2(B,∆), then there is a proper closed subset Z ( B such that, for
every finitely generated field L/K and every variety V over L, the set of non-constant near-maps
f : V (BL,∆L) with f(V ) 6⊂ Z is finite.

Theorem 2.7 is a Mordellicity statement (i.e., a finiteness result for rational points) for moduli
spaces of orbifold maps. It is a natural orbifold extension of [Jav, Theorem 1.3], and implies that
(X,∆) is pseudo-p-Mordellic for p > 0 (where we freely adapt the terminology in [EJR22, Section 2]
to the orbifold setting). Its proof is a mixture of algebro-geometric and arithmetic arguments. The
geometric ingredients of its proof include the recent extension of Kobayashi–Ochiai’s finiteness
theorem for dominant maps to a variety of general type (Theorem 4.1) and an orbifold extension of
Bogomolov’s theorem for surfaces with positive second Segre class (Theorem 6.4). We will also need
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two arithmetic finiteness results: (1) Faltings’s proof of the Mordell conjecture and (2) Shafarevich’s
isogeny theorem for elliptic curves. The algebro-geometric part of the proof

We stress that Theorem 2.7 is false over algebraically closed fields of characteristic zero, i.e.,
the assumption that K is finitely generated can not be omitted. This is simply because there are
surfaces B as in Theorem 2.7 which are dominated by a product of (higher genus) curves; see
Remark 5.2 for an explicit example.

Theorem 2.7 is reminiscent of the theorem of De Franchis that, for V and X varieties, the set
of non-constant morphisms V → X is finite when X is a log-general type curve. Such finiteness
results pertain to the finiteness of certain Hom-schemes, whereas Theorem 2.7 only guarantees the
Mordellicity of the relevant Hom-schemes (as the desired zero-dimensionality can certainly fail as
we just explained).

As we briefly explained in the introduction, Theorem 2.7 is used to prove Theorem 1.2. In fact,
for the threefolds X considered in Theorem 1.2, there is a smooth projective surface B of Kodaira
dimension one and an elliptic fibration X → B whose orbifold base (B,∆) (see Definition 2.2) is of
general type and satisfies c1(B,∆)2 > c2(B,∆). Now, the key observation is that almost all of the
transcendental-rational points on X give rise to orbifold near-maps V (B,∆), and the latter are
finite modulo some exceptional locus by Theorem 2.7. We refer to Section 8 for details.

3. The moduli space of orbifold maps

We show that the subset of orbifold maps inside the moduli space of maps from a fixed curve
to an orbifold defines a locally closed subscheme (see Corollary 3.9). We deduce this from another
result on families of orbifold maps (Theorem 3.5).

3.1. Vanishing of sections of line bundles. In this section we prove the following presumably
well-known result; due to lack of reference we include a proof. We stress that in this statement
the scheme X is assumed to have no embedded points [Sta15, Tag 05AK], but may be very well
nonreduced.

Proposition 3.1. Let f : X → S be a finite type dominant morphism of schemes, where X is an
irreducible scheme with no embedded points and S is an integral noetherian scheme. Let L be a line
bundle and let t ∈ L(X) be a global section such that, for a dense set of points s ∈ S, the restriction
of t to Xs vanishes. Then t = 0.

We proceed in two steps. First, we show vanishing of t on the generic fiber and then use this to
show global vanishing.

Lemma 3.2 (Vanishing on generic fiber). Let f : X → S be a finite type morphism of schemes,
where S is an integral noetherian scheme with generic point η. Let L be a line bundle on X and
let t ∈ L(X) be a global section such that, for a dense set of points s ∈ S, the restriction of t to Xs

vanishes. Then the restriction of t to the generic fiber Xη vanishes.

Proof. We can replace S by a dense open U ⊆ S as this preserves the hypothesis and does not
change the generic fiber. Thus, we may assume that S = SpecA is affine. Clearly, by choosing an
open affine covering of X, we may and do assume that X = SpecB is affine.

Note that f induces a finite type morphism ϕ : A → B of commutative rings, where A is a
noetherian integral domain. We interpret the line bundle L as a projective B-module M and the
global section t as an element m of M . By generic freeness ([Sta15, Tag 051R]), there is a nonzero
element f ∈ A such that M⊗AA[f−1] is a free A[f−1]-module. Replacing A by a A[f−1] if necessary
(i.e., S by a dense open), we may assume that M is a free A-module.

By assumption, there is an index set I and prime ideals pi ⊂ A with i ∈ I and ∩i∈Ipi = 0 such
that, for every i in I, the element m is in the kernel of M → M ⊗A κ(pi). However, the kernel of
this map is piM . Moreover, the intersection satisfies ∩i∈IpiM = (∩i∈Ipi)M = 0 by freeness of M
over A. This implies that m = 0, as required. �
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Generic vanishing implies global vanishing, assuming in addition that the total space has no
embedded points and that the morphism is dominant (but not necessarily of finite type).

Lemma 3.3 (Global vanishing). Let f : X → S be a dominant morphism of noetherian schemes.
Assume that S is integral and that X is irreducible without embedded points. Let L be a line bundle
on X and t ∈ L(X). If the restriction of t to the generic fiber Xη is zero, then t = 0.

Proof. The vanishing of a section can be tested locally, so that we may assume that X and S are
affine and that L is trivial. In this case, the lemma reduces to the following statement:

Let A ⊆ B be an inclusion of noetherian rings. Assume that A is an integral domain and that
B has a unique minimal prime ideal and no embedded primes. Then the map B → (A \ {0})−1B
is injective.

To prove this statement, let b ∈ B be in the kernel of B → (A \ {0})−1B. Then there exists a
nonzero a ∈ A such that ab = 0. Assume that b 6= 0. Then a is a zerodivisor in B. However, since
B has no embedded primes, every zerodivisor in B is nilpotent, so that a is a nonzero nilpotent
element. This contradicts the assumption that A is an integral domain. Thus, we conclude that
b = 0, as required. �

Proof of Proposition 3.1. Combine Lemma 3.2 and Lemma 3.3. �

Remark 3.4. The assumption on embedded points is necessary in Proposition 3.1 and Lemma
3.3. Indeed, consider X = Spec k[x, y]/(xy, y2), S = Spec k[x], and the finite surjective map
f : Spec k[x, y]/(xy, y2) → Spec k[x]. Note that the nonzero element y ∈ k[x, y]/(xy, y2) (regarded
as a section of OX) vanishes after tensoring with k(x), i.e., it vanishes generically without vanishing
globally. The problem in this situation is that the nilpotent y is killed by the non-nilpotent x (so
that x is a non-nilpotent zerodivisor in O(X)).

3.2. Families of orbifold maps.

Theorem 3.5. Let π : X → S be a dominant morphism of smooth varieties over k with geometri-
cally integral fibers. Let (Y,∆Y ) be a locally factorial orbifold pair and let f : X → Y be a morphism
of varieties. Assume that for every s ∈ S(k), the image of the restriction fs : Xs → Y is not con-
tained in the support of ∆Y . Furthermore, assume that there is a dense set of points s in S(k) such
that fs : Xs → (Y,∆Y ) is an orbifold morphism. Then, f : X → (Y,∆Y ) is an orbifold morphism
and the fiberwise morphisms fs : Xs → (Y,∆Y ) are orbifold for all s ∈ S(k).

Proof. First, note that by assumption the image of f is not contained in supp(∆Y ). Thus, we only
need to check that the multiplicities of the preimage divisors are correct. For this, let E ⊆ supp(∆Y )
be a prime divisor and let m be the multiplicity of E in ∆Y . Let D be an irreducible component
of the pullback divisor f∗E.

Observe that π|D : D → S is dominant. Otherwise, the generic point η of D maps to a non-generic

point π(η) ∈ S. As π−1(π(η)) is irreducible by assumption, and since we have D ⊆ π−1(π(η)) but

π−1(π(η)) 6= X by dominance of π, we have D = π−1(π(η)). This implies that there is a closed
point s ∈ S(k) which is a specialization of π(η) such that D contains the fiber Xs. But this is in
contradiction to the assumption that no fiber of π is mapped into the support of ∆Y .

Let L be the line bundle on Y which corresponds to the divisor class E. Let t ∈ L(Y ) be the
global section whose vanishing divisor equals E. We pull back t and L along f and obtain a line
bundle f∗L on X with a global section f∗t. This global section vanishes along D. We must show
that it does so with multiplicity at least m.

If m = ∞, then we know that D ∩ Xs must be empty for every s ∈ S(k) such that fs : Xs →
(Y,∆Y ) is an orbifold morphism. This contradicts the observation that D → S is dominant,
showing that D cannot exist, i.e. f∗E = 0.

If m < ∞, let Dm be the m-th infinitesimal neighbourhood of D in X . This is an irreducible
closed subscheme of X . As X is locally factorial, the divisor D ⊆ X is locally principal. Hence the
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scheme Dm has no embedded points. By what we observed before, the projection π|Dm : Dm → S
is dominant. We must now show that the section f∗t ∈ f∗L(X) is the zero section when restricted
to Dm.

To do so, we first note that if the fiber Ds := D ×S κ(s) is reduced for some s ∈ S(k), the m-th
infinitesimal neighborhood of D ×S κ(s) in Xs is exactly Dm ×S κ(s). Since the generic fiber of
D → S is geometrically reduced (as we are in characteristic zero), the set of s ∈ S(k) such that Ds

is reduced contains a dense open [Sta15, Tag 0578].
By assumption, there is a dense subset Σ ⊆ S(k) such that, for every s ∈ Σ, the morphism

fs : Xs → (Y,∆Y ) is orbifold. For these s, the section f∗t vanishes in the m-th infinitesimal
neighborhood of (D×S κ(s))red. By the previous paragraph, we may assume that for all s ∈ Σ, the
fiber Ds is reduced. Therefore, for every s ∈ Σ, the section f∗t vanishes identically on the fiber
of Dm → S over s. It then follows from Proposition 3.1 that (f∗t)|Dm vanishes. This proves that
X → (Y,∆Y ) is an orbifold morphism.

To show that all fiberwise morphisms are orbifold, let s ∈ S(k) be a closed point and consider
the morphism Xs ⊂ X → (Y,∆Y ). This is a composition of orbifold morphisms. As its image is
not contained in supp ∆Y by assumption, it is an orbifold morphism. �

3.3. The Hom-scheme of orbifold maps. For X and Y projective schemes over k, we let
Homk(X,Y ) be the scheme representing the functor

Sch/kop → Sets, S 7→ HomS(XS , YS).

Fix an ample line bundle on X and Y (hence on X × Y ). Then, for every polynomial P ∈ Q[t], let
HomP

k (X,Y ) be the subscheme of Homk(X,Y ) parametrizing morphisms f : X → Y with Hilbert

polynomial P (with respect to the fixed ample line bundle on X × Y ). Note that HomP
k (X,Y ) is

a quasi-projective scheme over k and that Homk(X,Y ) = tP∈Q[t]HomP
k (X,Y ).

Let ∆Y be an orbifold divisor on Y . Let Hom(X, (Y,∆Y )) be the subset of Homk(X,Y )(k) given
by orbifold morphisms X → (Y,∆Y ). Let Z be the support of ∆Y . Note that

Hom((X,∆X), (Y,∆Y )) ⊆ Homk(X,Y )(k) \Homk(X,Z)(k).

Lemma 3.6. Let S be a noetherian scheme. Let X → S be a flat projective morphism, and let
Y → S be a quasi-projective morphism. Let Z ⊆ X be a closed subscheme, flat over S. Then there
is a natural closed immersion HomS(Y, Z)→ HomS(Y,X).

Proof. See [Gro95, Variant 4.c] for the existence of the representing schemes mentioned in this proof.
Let T be any S-scheme. Then an S-morphism Y ×ST → X factors over Z if and only if its graph Γ ⊆
Y ×ST×SX is contained in Y ×ST×SZ. This shows that HomS(Y,Z) = HomS(Y,X)×HilbS(Y×SX)

HilbS(Y ×SZ). Thus, it suffices to show that HilbS(Y ×SZ)→ HilbS(Y ×SX) is a closed immersion.
This is shown in [Sta15, Tag 0DPF]. �

Lemma 3.7. Let f : Z → X be an immersion of normal varieties, let (Y,∆) be a locally factorial
orbifold, and let g : X → (Y,∆Y ) be an orbifold morphism. If the image of the composed map g ◦ f
is not contained in supp ∆Y , then g ◦ f is an orbifold morphism Z → (Y,∆Y ).

Proof. As every immersion can be factored into an open and a closed immersion, it suffices to treat
these cases separately.

The case of an open immersion is clear, as the coefficients of a Weil divisor (like g∗∆Y ) do not
change when restricting to a dense open.

For the case of a closed immersion, let DivZ(X) ⊆ Div(X) denote the subgroup of those divisors
on X whose support does not contain Z. Then there is a well-defined restriction map DivZ(X)→
Div(Z) sending effective divisors to effective divisors. In particular, this restriction map does not
decrease the coefficients of an effective Weil divisor. As g does not factor over supp ∆Y , the pullback
of every irreducible component of ∆Y along g is actually contained in the subgroup DivZ(X).
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Moreover, the pullback along g ◦ f (whenever it is defined) is the pullback along g followed by the
restriction map DivZ(X)→ Div(X). Combining these statements shows that the pullback of every
irreducible component of supp ∆Y along g ◦ f has sufficiently high multiplicity, as desired. �

Theorem 3.8. Let X be a normal quasi-projective variety and let X ⊆ X be a normal projective
compactification with divisorial boundary ∆X . Let (Y,∆Y ) be a locally factorial orbifold. Then the
subset Hom((X,∆X), (Y,∆Y )) ⊂ Homk(X,Y )(k) is locally closed. More precisely, it is closed in
Homk(X,Y )(k)\Homk(X, supp ∆Y ) and Homk(X, supp ∆Y ) is a closed subscheme of Homk(X,Y ).
Moreover, for every irreducible component H of Hom((X,∆X), (Y,∆Y )) (endowed with its reduced
subscheme structure) with normalization S → H, the composed evaluation map

ev : X × S → X ×H → (Y,∆Y )

is an orbifold map.

Proof. Since supp ∆Y ⊂ Y is a closed immersion, the morphism Hom(X, supp ∆Y )→ Hom(X,Y ) is
a closed immersion of schemes as well (Lemma 3.6). By the definition of an orbifold morphism, the
set Hom((X,∆X), (Y,∆Y )) is hence a subset of the k-points of the open subscheme Homk(X,Y ) \
Hom(X, supp ∆Y ) of Homk(X,Y ).

Thus, to prove the statement, it remains to show that the set Hom((X,∆X), (Y,∆Y )) is closed
in Homk(X,Y )(k)\Homk(X, supp ∆Y )(k). Let H be its closure with the reduced closed subscheme
structure. To show the claim, we have to show that H = Hom((X,∆X), (Y,∆Y )), which amounts to
showing that for every f ∈ H(k), the morphism f : X → Y is an orbifold map (X,∆X)→ (Y,∆Y ).
This is equivalent to showing that the induced morphism X → (Y,∆Y ) is an orbifold morphism.
To do so, let H ⊂ H be an irreducible component containing f . Let S → H be the normalization.
We first show that the evaluation morphism ev : X × S → (Y,∆Y ) is an orbifold morphism.

For this, let So ⊂ S and Xo ⊂ X denote the smooth loci, which are big opens by the normality
of X and S. The variety Xo × So is then smooth and the projection morphism Xo × So → So has
geometrically integral fibers. Moreover, by construction, there is a dense set of points s ∈ So(k)
such that the induced morphism X ×{s} → (Y,∆Y ) and hence the induced morphism Xo×{s} →
(Y,∆Y ) is orbifold. Thus, by Theorem 3.5, the map Xo × So → (Y,∆Y ) is orbifold. Since the
complement of Xo×So in X×S has codimension at least two (by normality of X and S), it follows
that X × S and Xo × So have the same Weil divisors, so that X × S → (Y,∆Y ) is also an orbifold
morphism.

Now, let f̃ ∈ S(k) be a point lying over f ∈ H(k). Then the composition X × {f̃} ⊂ X × S →
(Y,∆Y ) (which is just f) is the composition of a closed immersion with an orbifold morphism and
its image is not contained in supp ∆Y . Hence it is an orbifold morphism (Lemma 3.7). This finishes
the proof. �

Corollary 3.9. Let (X,∆X) be a projective locally factorial orbifold and let C be a smooth quasi-
projective curve with smooth compactification C ⊆ C. Then the set Hom(C, (X,∆X)) is closed in
Hom(C,X)(k) \Hom(C, supp ∆X)(k) and for every irreducible component H of Hom(C, (X,∆X))
(endowed with its reduced subscheme structure) with normalization S → H, the evaluation map
ev : C × S → (X,∆X) is an orbifold morphism.

Proof. Noting that every orbifold morphism C → (X,∆X) extends to a morphism of varieties
C → X, this is just a special case of Theorem 3.8. �

This immediately implies the following (presumably well-known) result.

Corollary 3.10. Let C be a smooth projective curve and let X be a locally factorial projective
variety. Let C ⊂ C be a dense open and U ⊂ X be a dense open with complement D. Then
Hom(C,U) ⊂ Hom(C,X) \Hom(C,D) is closed.
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Remark 3.11. We warn the reader that even if ∆ = 0, the scheme Hom(C,X) constructed in
Corollary 3.9 does not represent the functor T 7→ Hom(C × T,X). Indeed, this functor is almost
never representable by a scheme if C is non-projective, with representability failing already in
simple cases like C = A1, X = P1. In fact, for every smooth variety T over k, the T -points of the
scheme we denoted by Hom(C, (X,∆)) are given by

T 7→ {f : C × T → (X,∆) | f extends to a morphism of schemes C × T → X},
where C is the smooth compactification of C. In particular, when ∆ = 0, we just have Hom(C,X) =
Hom(C,X).

4. The dimension of the moduli space of orbifold maps

In this section we show that the moduli space of non-constant orbifold maps from a fixed curve
to an orbifold pair of general type (X,∆) is one-dimensional, under suitable assumptions (see
Corollary 4.6).

Let (X,∆) be a smooth proper orbifold. Recall that (X,∆) is of general type if KX + ∆ is a big
Q-divisor. A key ingredient in proving Corollary 4.6 is the following recently established finiteness
result for dominant maps [BJ, Theorem 1.1].

Theorem 4.1 (Kobayashi–Ochiai for orbifold pairs). Let V be a normal integral variety and let
(X,∆) be a smooth proper orbifold of general type. Then, the set of dominant morphisms V →
(X,∆) is finite.

4.1. Bend-and-break and orbifold Kobayashi–Ochiai. We will use Theorem 4.1 and Mori’s
bend-and-break to prove the following structure result on moduli spaces of orbifold maps.

Lemma 4.2. Let (X,∆) be a smooth projective orbifold of general type and let C be a smooth
quasi-projective curve. Let H ⊂ Homnc

k (C, (X,∆)) be a locally closed subscheme of dimension at
least dimX. Assume H is an integral finite type scheme over k. Then, the image of C ×H → X
is uniruled.

Proof. Replacing H by a dense open if necessary, we may assume that H is smooth.
Let Σ := {c ∈ C(k) | evc(H) ⊂ ∆}. Note that Σ is a finite subset of C. It follows from Corollary

3.9 that the universal evaluation map C ×H → X defines an orbifold morphism C ×H → (X,∆).
In particular, for every c ∈ C(k) \ Σ, the morphism evc : H → (X,∆) is orbifold.

By Theorem 4.1, as H is a variety, the set of c in C(k) \ Σ with evc dominant is finite. Indeed,
assume for a contradiction that there is a sequence c1, c2, . . . of pairwise distinct points of C \ Σ
such that evc1 , evc2 , . . . are dominant. Then, by Theorem 4.1, replacing c1, . . . by a subsequence
if necessary, we must have that evc1 = evc2 = . . .. This implies that, for all f in H, we have
f(c1) = f(c2) = f(c3) = . . ., i.e., f is constant. This contradicts our assumption that H lies in
the moduli space of non-constant maps from C to X. We conclude that there is a dense open
U ⊂ C(k) \ Σ such that, for all c in U , the morphism evc : H → X is non-dominant.

We now adapt part of the proof of [GP08, Lemma 2.2.1]. Note that, for all c in U , the closure
of the image of evc is of dimension at most dimX − 1. Thus, since H has dimension at least
dimX, for every c in U , there is a dense open Vc ⊂ evc(H) such that, for every x in Vc, the fiber
of evc : H → X over x is positive-dimensional. In particular, for every x in Vc, there is a curve
Dx ⊂ H that is contracted to x along evc. Consequently, the scheme Hom((C, c), (X,x)) ∩ H is
positive-dimensional (as it contains the curve Dx).

Let C be the smooth projective model for C. For every f in H given by a morphism f : C → X,
we let f : C → X denote the unique extension to C. Now, let L be an ample line bundle on X and
note that, since H is of finite type over k, there is a constant α (depending only on L and H) such

that, for every f ∈ H, the degree of f
∗
L on C is bounded by α. In particular, for every c in U

and x in Vc, the moduli scheme Hom≤α((C, c), (X,x)) of morphisms f : C → X with f(c) = x and
9



deg f
∗
L ≤ α is positive-dimensional, so that there is a rational curve of degree at most 2α in X

passing through x (see [Deb01, Proposition 3.5]). We conclude that, for every x in ∪c∈UVc, there
is a rational curve P1 → X of degree at most 2α passing through x.

Let Z be the closure of the image of C ×H → X and note that the closure of ∪c∈UVc equals Z.
Then, the morphism

P1
k ×Hom≤2α(P1, Z)→ Z

is dominant (as its image contains ∪c∈UVc), so that Z is uniruled. This concludes the proof. �

Remark 4.3. Let (X,∆) be a smooth proper orbifold and let Z ⊆ X be a closed subset. The
following conditions are equivalent:

(1) For every smooth quasi-projective curve C0 and every orbifold morphism C0 → (X,∆) not
factoring over Z, the curve C0 is of log-general type.

(2) For every smooth proper orbifold curve (C,∆C) and every morphism f : (C,∆C)→ (X,∆)
with f(C) 6⊂ Z, we have that (C,∆C) is of general type.

Indeed, to show that (2) =⇒ (1), let C be the smooth projective model of C0 and let ∆C be
the divisor C \ C0 (where we give each point multiplicity ∞). To show that (1) =⇒ (2), we
invoke the following fact: every smooth proper orbifold curve (C,∆C) which is not of general type
is dominated by either Gm or an elliptic curve.

Lemma 4.4. Let (X,∆) be a smooth projective orbifold and let Z ⊂ X be a closed subset. Assume
that, for every smooth quasi-projective curve D and orbifold morphism f : D → (X,∆) with f(D) 6⊂
Z, the curve D is of log-general type. Let C be a smooth quasi-projective curve. If H is a positive-
dimensional integral locally closed subscheme of Homnc

k (C, (X,∆))\Homk(C,Z), then the image of
the universal evaluation map C ×H → X is at least two-dimensional.

Proof. Clearly, the image of C × H → X is positive-dimensional. Let D ⊂ X be the scheme-
theoretic image of ev : C ×H → X and note that D is not contained in Z (as H is not contained
in Homk(C,Z)). Assume for a contradiction that D is one-dimensional.

Let D′ → D be the normalization of the integral curve D. Let ∆D′ be the orbifold divisor on
D′ induced by ∆, i.e., (D′,∆D′) → (X,∆) is a morphism of orbifolds and ∆D′ is minimal with
this property. Since the image of D′ → X is not contained in Z, it follows from our assumption
(see Remark 4.3) that the smooth proper orbifold (D′,∆D′) is of general type. Now, for every f
in H, by the universal property of normalizations, the morphism f : C → X factors over D′ → X.
Moreover, by construction of ∆D′ , the morphism C → D′ is in fact a dominant orbifold morphism
C → (D′,∆D′). However, by Campana’s De Franchis theorem [Cam05, §3] (or Theorem 4.1),
the set of dominant orbifold morphisms C → (D′,∆D′) is finite. This implies that H is finite
contradicting the positive-dimensionality of H.

We conclude that D is at least two-dimensional, as required. �

Theorem 4.5. Let (X,∆) be a smooth projective orbifold surface of general type with X non-
uniruled. Let Z ⊆ X be a closed subvariety such that, for every smooth quasi-projective curve D
and every morphism f : D → (X,∆) with f(D) 6⊂ Z, the curve D is of log-general type. Let C
be a smooth quasi-projective curve. Then, the moduli scheme Homnc(C, (X,∆)) \ Hom(C,Z) is of
dimension at most one.

Proof. We argue by contradiction. Assume H ⊂ Homnc(C, (X,∆)) \ Hom(C,Z) is an irreducible
component of dimension at least two. First, we note that the image of C ×H → X is of dimension
at least two (Lemma 4.4), and thus the morphism C ×H → X is dominant. However, by Lemma
4.2, the image of C × H → X is uniruled. We conclude that X is uniruled, contradicting our
assumption. �
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4.2. Pseudo-bounded orbifold pairs. We say that a locally factorial projective orbifold (X,∆)
is 1-bounded modulo ∆ if, for every ample line bundle L on X and every smooth projective connected
curve C over k, there is a constant αX,∆,L,E,C such that, for every smooth projective connected
curve C over k, and every orbifold morphism f : C → (X,∆) with f(C) 6⊂ ∆ ∪ E, the inequality

degC f
∗L ≤ αX,∆,L,E,C

holds. We say that a locally factorial projective orbifold (X,∆) is pseudo-1-bounded if there is a
proper closed subset E ( X containing ∆ such that (X,∆) is 1-bounded modulo E.

Corollary 4.6. Let (X,∆) be a smooth projective orbifold surface of general type with X non-
uniruled, and let Z ( X be a proper closed subvariety such that (X,∆) is 1-bounded modulo Z.
Then, the following statements hold.

(1) The moduli scheme Homnc(C, (X,∆)) \ Hom(C,Z) is a scheme of finite type over k of
dimension at most one.

(2) For almost every c in C, the evaluation map evc : Homnc(C, (X,∆)) \ Hom(C,Z) → X is
quasi-finite.

Proof. The scheme Homnc(C, (X,∆)) \ Hom(C,Z) is of finite type over k by the assumption that
(X,∆) is 1-bounded modulo Z. Moreover, this assumption implies that, for every smooth quasi-
projective curve C over k and every f : C → (X,∆) with f(C) 6⊂ Z, the curve C is of log-general
type. (Here we use that a curve which is not of log-general type has endomorphisms of unbounded
degree.) Therefore, the first statement follows directly from Theorem 4.5.

The second statement follows easily from the first statement, as we show now. Namely, let
H1, . . . ,Hr ⊂ Homnc(C, (X,∆))\Hom(C,Z) be the positive-dimensional irreducible components of
Homnc(C, (X,∆))\Hom(C,Z). Note that the set Σ of c in C(k) such that there is an 1 ≤ i ≤ r with
evc : Hi → X constant is finite. In particular, for every c in C(k) \ Σ, the morphism evc : Hi → X
is non-constant, and thus quasi-finite (as Hi is one-dimensional). It readily follows that, for every
c in C \ Σ, the morphism evc : Homnc(C, (X,∆)) \Hom(C,Z)→ X is quasi-finite. �

Corollary 4.6 implies that Homnc(C, (X,∆))\Hom(C,Z) is a hyperbolic quasi-projective scheme
of dimension at most one. In particular, it satisfies Lang–Vojta’s conjectures and has only finitely
many integral points (on any model over the integers). However, we require the finiteness of
rational points on this space, so we wish to establish that every positive-dimensional component of
the moduli space Homnc(C, (X,∆))\Hom(C,Z) is birational to a curve of genus at least two. This
is however false without any additional assumptions (Remark 5.3). In the next section we prove
the desired property, assuming the variety X underlying the orbifold (X,∆) is a surface of Kodaira
dimension one whose elliptic fibration is non-isotrivial.

5. Kodaira dimension one and rational points on moduli spaces of orbifold maps

Using our results above, we now prove the following structure result for the moduli space of orb-
ifold maps, assuming that the variety underlying the orbifold is a non-isotrivial Kodaira dimension
one surface.

Theorem 5.1. Let (X,∆) be a smooth projective orbifold of general type with X a Kodaira di-
mension one surface whose elliptic fibration is non-isotrivial. Let Z ⊂ X be a proper closed sub-
set such that (X,∆) is 1-bounded modulo Z. Let C be a smooth quasi-projective curve and let
H ⊂ Homnc

k (C, (X,∆)) \ Hom(C,Z) be a positive-dimensional irreducible component. Then H is
birational to a smooth projective curve of genus at least two.

Proof. Since X is non-uniruled, it follows from Corollary 4.6.(1) that H is one-dimensional. More-
over, the evaluation map C ×H → X is dominant (Lemma 4.4). Let H be the smooth projective
model of H, and let g be its genus. To prove the corollary, it suffices to show that g ≥ 2. First,
since X is not uniruled, we see that g ≥ 1. We now argue by contradiction and assume that g = 1.
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Let X → B be the non-isotrivial elliptic fibration on X (induced by the pluricanonical system of
X). Let C ⊆ C be the smooth compactification of C. Since C ×H dominates X (see Remark 5.2),
we have that C × H is of Kodaira dimension one. In particular, the Iitaka fibration of C × H is
the projection onto C. Therefore, by the canonicity of the Iitaka fibration, there is a commutative
diagram

C ×H

��

rational map // X

��
C // B.

It follows that almost all fibers of X → B are dominated by the elliptic curve H. In particular, it
follows that almost all fibers of X → B are isogenous to each other, so that X → B is isotrivial.
This contradiction completes the proof. �

Remark 5.2. We note that, with notation as in the above proof, the analysis of the case that
C × H dominates X can not be omitted. Indeed, there exist smooth projective surfaces X of
Kodaira dimension one which are dominated by a product of two curves of genus at least two. One
can construct such surfaces as follows (using some of the notions studied in [HK13]): For every
even integer n ≥ 12, consider the smooth projective surface X defined by the affine equation

1 + xtn + x3 + y2 = 0

in A2
x,y×A1

t . Then X is a Kodaira dimension one surface with non-isotrivial elliptic fibration (given
by the projection onto t). This surface is dominated by a Fermat surface Xm + Y m = Zm + Wm

for some large integer m. Let C be the smooth affine curve defined by xm + ym = 1 and note that
C × C dominates X.

Remark 5.3. Theorem 5.1 is false without the assumption that X is of Kodaira dimension one
and non-isotrivial. Consider, for example, the smooth projective orbifold of general type (X,∆) :=
(E×E,E× 1

2{0}+ 1
2{0}×E) where E is an elliptic curve and 0 ∈ E is its origin. Then, if C is any

smooth quasi-projective curve dominating (E, 1
2{0}), the moduli space Hom(C, (X,∆)) contains a

copy of E \ {0}.

Theorem 5.4. Let X be a Kodaira dimension one smooth projective surface over a finitely gener-
ated field K of characteristic zero whose elliptic fibration is non-isotrivial. Let Z ⊂ X be a proper
closed subset. Let ∆ be an orbifold divisor on X such that (X,∆) is 1-bounded modulo Z and of
general type. Then, for every smooth quasi-projective curve C over K, the set of non-constant
orbifold morphisms f : C → (X,∆) with f(C) 6⊂ Z is finite.

Proof. It suffices to show that the scheme Homnc
K (C, (X,∆)) \HomK(C,Z) has only finitely many

K-points. To do so, let H be one of the finitely many irreducible components of Homnc
K (C, (X,∆))\

HomK(C,Z). Then it suffices to show that H(K) is finite. This is clear if H is zero-dimensional.
Thus, we may assume that H is positive-dimensional in which case it is birational to a smooth
projective curve of genus at least two (Theorem 5.1). It follows that H(K) is finite by Faltings’s
theorem (formerly Mordell’s conjecture) [Fal84]. This concludes the proof. �

Remark 5.5. It follows from Remark 5.2 that Theorem 5.4 is false over algebraically closed fields of
characteristic zero. More precisely, if K is an algebraic closure of K (with notation as in Theorem
5.4), then the set of non-constant orbifold maps f : CK → (XK ,∆K) with f(CK) 6⊂ ZK is not
necessarily finite.

6. Bogomolov’s theorem in the orbifold setting

Let (X,∆) be a smooth projective orbifold pair. If E ⊂ X is a closed subset, then we follow
[Dem97, RTW21, JR22, Rou10, Rou12] and say that (X,∆) is algebraically hyperbolic modulo E
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over k if, for every ample line bundle L on X, there is a constant αX,∆,L,E such that, for every
smooth projective connected curve C over k, and every orbifold morphism f : C → (X,∆) with
f(C) 6⊂ ∆ ∪ E, the following inequality holds.

degC f
∗L ≤ αX,∆,L,E · genus(C)

Obviously, if (X,∆) is algebraically hyperbolic modulo E, then (X,∆) is 1-bounded modulo E.
We say that (X,∆) is pseudo-algebraically hyperbolic over k if there is a proper closed subset

E ⊂ X containing ∆ such that (X,∆) is algebraically hyperbolic modulo E.
We start with a simple application of Riemann-Hurwitz to fibered surfaces.

Lemma 6.1. Let S be a smooth projective surface, let D be an effective reduced divisor on S, let B
be a smooth projective curve, and let p : S → B be a flat proper (surjective) morphism. Then, there
is a proper closed subset Z ( S such that, for every smooth projective curve C and non-constant
morphism f : C → S contained in a fiber of p satisfying f(C) 6⊂ Z, the inequality

deg f∗(KS +D) ≤ 2g(C)− 2 + #f−1(D)

holds.

Proof. We may write D = Dh +Dv, where the components of Dh are horizontal (i.e., surject onto
B) and the components of Dv are vertical (i.e., are contained in a fiber of p). Let Bt be the set of
closed points b in B such that the intersection of Dh and the fiber p−1(b) = Sb is transversal. Note
that Bt is a dense open of B. Since S is smooth, the fibration p : S → B has only finitely many
singular fibers. We define Z to be the (finite) union of suppDv, the singular fibers of S → B, and
the fibers Sb where b runs over all points b ∈ B \Bt.

Let C be a smooth projective curve and let f : C → S be a non-constant morphism with f(C) ⊂ S
contained in a fiber and f(C) 6⊂ Z. By construction of Z, we have that F := f(C) is a smooth
fiber of p, and that F intersects D transversally. Write ι : F → S for the inclusion and g : C → F
for the morphism induced by f : C → S. Then, as KS |F and KF are linearly equivalent as divisors
on F , it follows that

deg f∗(KS +D) = deg g∗KF + deg f∗D

Since F and D intersect transversally, we have that ι−1(D) = ι∗D. Therefore,

deg g∗KF + deg f∗D = deg g∗KF + deg g∗(ι−1(D))

Note that the finite morphism g : C → F induces a morphism (C, f−1(D)) → (F, ι−1(D)) of
orbifolds (which, in this case, are log-pairs). In particular, there is an injective pullback morphism
g∗ωF (ι−1(D))→ ωC(f−1(D)), so that

deg g∗KF + deg g∗(ι−1(D)) = deg g∗ωF (ι−1(D)) ≤ degωC(f−1(D)) = degKC + #f−1(D).

This proves the lemma. �

Using Jouanolou’s theorem [Jou78] we get the following improvement of the previous lemma for
foliations on surfaces.

Lemma 6.2. Let S be a smooth projective surface, let D be an effective reduced divisor on S, and
let F be a foliation on S. Then, there exists a proper closed subset Z ( S such that, for any smooth
projective curve C and any non-constant morphism f : C → S tangent to F with f(C) 6⊂ Z, the
following inequality holds.

deg f∗(KS +D) ≤ 2g(C)− 2 + #f−1(D)

Proof. If F has only finitely many compact leaves, then we define Z to be the union of these
compact leaves, so that the statement is vacuously true. If F has infinitely many compact leaves,
then Jouanolou’s theorem [Jou78] implies that F is a fibration in which case the statement follows
from Lemma 6.1. �
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Recall that, for (X,∆) a smooth orbifold, Campana defined the sheaf of symmetric differentials
SnΩ(X,∆) := SnΩ1

(X,∆)[Cam11, Section 2.5].

The key insight of Bogomolov was that the existence of symmetric differentials on a smooth
projective surface can be used to bound the degree of a curve in terms of its genus. As the following
lemma shows, in the setting of orbifolds, one can instead use Campana’s symmetric differentials to
such an end.

Lemma 6.3. Let (X,∆) be a smooth projective orbifold surface of general type over k. Assume
that, for every ample line bundle A, there is an integer n ≥ 1 such that H0(X,SnΩ(X,∆)⊗A−1) 6= 0.
Then (X,∆) is pseudo-algebraically hyperbolic over k.

Proof. Let D0 be an effective Q-divisor such that L0 := KX +∆−D0 is ample. Let m be a positive
integer such that L := mL0 is a Z-divisor. By assumption, there exists an integer n ≥ 1 and a
non-zero orbifold symmetric differential ω in H0(X,SnΩ(X,∆) ⊗ L−1).

We consider the projectivized tangent bundle

π : Y := P(TX(− logd∆e))→ X.

Note that ω corresponds to a global section of OY (n)⊗π∗L−1. Let S ⊂ Y be the zero divisor of ω.
Consider the tautological holomorphic foliation F of rank 1 on S induced by the subbundle

V ⊂ TY (− log π−1(d∆e)) such that

Vx,[v] := {ξ ∈ TY (− log π−1(d∆e)) | dπ(ξ) ∈ C · v}.

Let ψ : S̃ → S be a desingularization, let D̃ := ψ−1(D), and let F̃ be the induced foliation on S̃.
Let Z1 ⊂ S be the exceptional locus of ψ.

If C is a smooth projective curve and f : C → (X,∆) is an orbifold morphism such that f∗ω 6= 0,
then f∗ω is a non-zero global section of SnΩC ⊗ f∗L−1 [Cam11, Proposition 2.11], so that

deg f∗L ≤ n degKC = n(2g(C)− 2).

Thus, it remains to treat the case where f∗ω = 0. In this case, the morphism f : C → X factors
over π|S : S → X and is tangent to the foliation F on S (i.e., is contained in a compact leaf of F).

By Lemma 6.2, there exists a proper closed subset Z̃ ⊂ S̃ such that, if f̃ : C → S̃ is a lift of

f : C → X with f̃(C) 6⊂ Z̃, then the following inequality holds.

deg f̃∗(K
S̃

+ D̃) ≤ 2g(C)− 2 + #f̃−1(D̃)

Define Z := π(Z1) ∪ π(ψ(Z̃)) ∪ suppD0 and note that Z ( X is a proper closed subset of X.
Now, for every morphism f : C → X with f(C) 6⊂ Z, the inequality

deg f∗(KX +D) ≤ 2g(C)− 2 + #f−1(D)

holds. Indeed, such a morphism factors uniquely through a morphism f̃ : C → S̃ with f̃(C) 6⊂ Z̃.
Since f : C → X is an orbifold morphism, we obtain

deg f∗(KX + ∆) ≤ 2g(C)− 2.

Finally, since L0 = KX + ∆−D0, we conclude that

deg f∗L0 ≤ deg f∗(KX + ∆) ≤ 2g(C)− 2.

This implies

deg f∗L ≤ m(2g(C)− 2).

This concludes the proof. �
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The following existence lemma for symmetric differentials is due to Bogomolov in the setting that
the orbifold divisor is empty or logarithmic (i.e., all of its non-trivial multiplicities are infinite); see
[Bog78, Corollary 10.11]. If all multiplicities of ∆ are finite, then the analogous existence result
is proven in [Rou12, Corollary 5.4]. In general (when ∆ has infinite and finite multiplicities), as
we show now, the existence of symmetric differentials can be proven using a simple “perturbation”
argument:

Lemma 6.4. If (X,∆) is a smooth projective orbifold surface of general type satisfying c1(X,∆)2 >
c2(X,∆) and A is an ample line bundle on X, then there is an integer n0 such that, for every n ≥ n0,
we have that H0(X,SnΩ(X,∆) ⊗A−1) 6= 0.

Proof. We may decompose ∆ into a “finite” and “infinite” part. More precisely, if ∆ =
∑

i(1 −
1
mi

)∆i, we define ∆log =
∑

i,mi=∞∆i. Define ∆fin = ∆ −∆log. (In other words, ∆log = b∆c and

∆fin = ∆− b∆c.)
Define ∆m = ∆fin +

(
1− 1

m

)
∆log. Since KX + ∆ is big, it follows that KX + ∆m is big for all

sufficiently large m. Moreover, from the explicit formulas given in Definition 2.6, it is clear that
for all sufficiently large m, the inequality c1(X,∆m)2 > c2(X,∆m) continues to hold. Thus, for
m large enough, we have that (X,∆m) is of general type and satisfies c1(X,∆m)2 > c2(X,∆m).
By applying [Rou12, Corollary 5.4] to (X,∆m), we have that H0(X,SnΩ(X,∆m) ⊗A−1) 6= 0. Since

SnΩ(X,∆m) ⊂ SnΩ(X,∆), we obtain that H0(X,SnΩ(X,∆) ⊗A−1) 6= 0, as required. �

As pointed out by McQuillan [McQ98, p. 122], the following result is proven implicitly in Bogo-
molov’s seminal paper [Bog77, Des79] when the orbifold divisor ∆ is empty.

Theorem 6.5. If (X,∆) is a smooth projective orbifold surface of general type and c1(X,∆)2 >
c2(X,∆), then (X,∆) is pseudo-algebraically hyperbolic over k.

Proof. Combine Lemma 6.3 and Lemma 6.4. �

7. A cutting argument and the proof of Theorem 2.7

To conclude the proof of our arithmetic finiteness theorem for orbifold surfaces of general type
with c1(X,∆)2 > c2(X,∆), we take very general hyperplane sections to reduce to the case of curves:

Lemma 7.1 (Cutting argument). Let (X,∆) be a smooth projective orbifold over a finitely gen-
erated field k of characteristic zero, and let Z ⊂ X be a proper closed subset. Assume that, for
every finitely generated field extension L/k and every smooth quasi-projective curve C over L, the
set of non-constant orbifold maps f : C → (XL,∆L) with f(C) 6⊂ Z is finite. Then, for every
finitely generated field extension M/k and every smooth quasi-projective variety V over M , the set
of non-constant orbifold near-maps f : V → (XM ,∆M ) with f(V ) 6⊂ ZM is finite.

Proof. We combine the arguments in the proofs of [Jav, Lemma 2.4] and [BJ, Theorem 5.4].
We argue by induction on d := dimV . If d = 1, then the required conclusion holds by assumption.

Now, suppose that d > 1. To prove the desired conclusion, let M/k be a finitely generated field
extension and V a smooth quasi-projective variety over M such that there is an infinite sequence
of pairwise distinct orbifold maps fi : V → (XM ,∆M ). Let V ⊂ PnM be an immersion. Let
M ⊂ Ω be an uncountable algebraically closed field containing M , and let P ∈ V (Ω) be such that
fi(P ) 6= fj(P ) for all i 6= j. Now, let H ⊂ VΩ ⊂ PnΩ be a very general hyperplane section containing
P . Since the restriction fi|H : H (XΩ,∆Ω) is defined at all points of codimension one of H
and does not factor over supp ∆, it follows from [BJ, Lemma 2.5] that fi|H : H (X,∆) is an
orbifold near-map. Moreover, since H ⊂ VΩ is very general, it follows that every near-map fi|H is
non-constant and that fi(H) 6⊂ ZΩ. We now descend P and H to a finitely generated extension of
M . Thus, let M ⊂ M2 ⊂ Ω be a finitely generated field extension of M contained in Ω such that
P ∈ V (Ω) lies in V (M2) and such that there is a hyperplane section H ⊂ PnM2

with H⊗M2 Ω = H
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(i.e., H is a model for H over M2). Then, for every i, the morphism fi|H : H (XM2 ,∆M2) is a
non-constant orbifold near-map with fi(H) 6⊂ ZM2 . Also, the morphisms fi|H are pairwise distinct
(as they differ at P ). As dimH < d, this contradicts the induction hypothesis and concludes the
proof. �

Corollary 7.2. Let X be a Kodaira dimension one smooth projective surface over a finitely gen-
erated field K of characteristic zero whose elliptic fibration is non-isotrivial. Let Z ⊂ XK be a
proper closed subset. Let ∆ be an orbifold divisor on X such that (X,∆) is of general type and al-
gebraically hyperbolic modulo Z. Then, for every finitely generated field extension L/K and smooth
quasi-projective variety V over L, the set of orbifold near-maps f : V (XL,∆L) with f(VL) 6⊂ ZL
is finite.

Proof. Combine Theorem 5.4 and Lemma 7.1. �

Remark 7.3. The assumption that K is finitely generated can not be dropped in Corollary 7.2,
as the desired conclusion fails over algebraically closed fields by Remark 5.5.

Theorem 7.4. Let (B,∆) be a smooth projective orbifold of general type over a finitely generated
field K of characteristic zero, where B is a Kodaira dimension one surface with non-isotrivial
elliptic fibration. If c1(B,∆)2 > c2(B,∆), then the following statements hold.

(1) There is a proper closed subset Z ⊂ BK such that the smooth projective orbifold (BK ,∆K)

is algebraically hyperbolic modulo Z over k.
(2) If L/K is a finitely generated field extension and V is smooth variety over L, then the set

of orbifold near-maps f : V (BL,∆L) with f(VL) 6⊂ ZL is finite.

Proof. Combine Theorem 6.5 and Corollary 7.2. �

Note that Theorem 2.7] follows directly from (the slightly stronger) Theorem 7.4.

8. Bogomolov–Tschinkel’s threefolds

Let k be a field of characteristic zero.

Definition 8.1. A k-scheme X is called a BT-threefold if it fits into a cartesian square

X S

B P1

ψ

φ

where

• S is a smooth projective surface and ψ is a non-isotrivial elliptic fibration.
• The fiber ψ−1(0) is a multiple fiber with multiplicity m, and this is the only multiple fiber.
• B is a smooth projective surface of Kodaira dimension 1 whose associated elliptic fibration

is non-isotrivial.
• The map φ has fibers of genus g ≥ 2.
• The fiber D := φ−1(0) is smooth.
• B \D is simply-connected.
• The singular loci of φ and ψ are disjoint.

Additionally, a BT-threefold is a BTCP-threefold if

c1

((
B, (1− 1

m)D
))2

> c2

((
B, (1− 1

m)D
))
.

Concretely, this means that

c1(B)2 + (1− 1
m)KB.D > c2(B) + ( 1

m −
1
m2 )D2.
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If X is a BT-threefold, then we will refer to the morphism X → B as the associated elliptic fibration.
Also, we define

∆ :=

(
1− 1

m

)
D.

The following lemma was already proven in Bogomolov–Tschinkel [BT04]; we include a slightly
different proof for the reader’s convenience. Also, to state our result, recall that a variety X over
k is algebraically simply-connected if πét

1 (Xk) is trivial, where k is an algebraic closure of k.

Lemma 8.2. Let X be a BT-threefold. Then X is a smooth projective algebraically simply-
connected threefold which is weakly-special but not special. Moreover, if k = C, then Xan is
simply-connected.

Proof. Over each point t ∈ P1 such that φ is smooth over t, the map X → S is smooth as well.
Since S is a smooth variety, it follows that each point of X mapping to a point of P1 over which φ
is smooth is itself a smooth point. The same argument holds for the map ψ. As the singular loci of
φ and ψ are disjoint, it follows that X is smooth. The map φ has geometrically connected fibers,
hence the map X → S does as well. As S is connected, it follows that X is connected. As X is
smooth, it follows that X is integral, hence a variety. Since projective morphisms are stable under
base change and composition, X is projective. It is clear that X is three-dimensional.

Assume that k = C. To see that X is simply-connected, we may assume that S → P1 is a
relatively minimal elliptic fibration (as blow-ups of smooth projective varieties do not change the
fundamental group). Now, we show that the open subset U ⊆ X lying over B \ D is simply-
connected. There exists an elliptic surface S′ → P1 with χ(OS) = χ(OS′), which has a simply-
connected fiber and a unique multiple fiber F ′ of multiplicity m. By [FM94, Theorem I.7.6], the
surface S is deformation equivalent to S′, and the deformation respects the elliptic fibrations of S
and S′. We assume that F ′ lies over 0 ∈ P1. The threefold X is then deformation equivalent to
X ′ := B ×P1 S′ and its open subset U is deformation equivalent to U ′ := (B \D)×P1\{0} (S′ \ F ′).
Since U and U ′ are diffeomorphic, we have that π1(U) ∼= π1(U ′). Thus, it suffices to show that U ′

is simply-connected. Now, the morphism U ′ → (B \ D) is an elliptic fibration with no multiple
fibers and at least one simply-connected fiber. By [Nor83, Lemma 1.5.C], the sequence

π1(F )→ π1(U ′)→ π1(B \D)→ 1

is exact, where F ⊆ U ′ denotes any smooth fiber of U ′ → (B \D). As B \D is simply-connected
by definition, it hence suffices to show that the map π1(F )→ π1(U ′) is the zero map. For this, let
F ′′ be a simply-connected fiber of U ′ → (B \D) and let V ⊆ U ′ be an open neighborhood of F ′′

(for the Euclidean topology) which deformation retracts onto F ′′. In particular, π1(V ) is trivial.
Then V contains a smooth fiber F of U ′ → (B \D). Thus, the map π1(F ) → π1(U ′) factors over
π1(V ) and hence must be the zero map, as desired.

To show that X is algebraically simply-connected, we may assume that k = C, so that the result
follows from the fact that Xan is simply-connected.

To see that X is weakly-special, first note that it suffices to show that X does not dominate any
positive-dimensional variety of general type (as X is simply-connected). So assume that X → Y is
a dominant map to a positive-dimensional variety. In case dimY = 3, as X is covered by a family
of elliptic curves, the variety Y will be as well. In case dimY = 2, if the map X → Y contracts
the fibers of X → B, it rationally factors over X → B, so that Y is rationally dominated by B.
If dimY = 2 and X → Y does not contract the fibers of X → B, then Y is again covered by a
family of elliptic curves. Finally, if dimY = 1, then, as X is simply-connected and hence has trivial
Albanese variety, Y must have trivial Albanese variety as well. Thus Y ∼= P1. In any case, Y is not
of general type.

To see that X is not special, it suffices to observe that the orbifold base of the morphism X → B
is (B, (1− 1

m)D), which is of general type, as m ≥ 2. �
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Since the fibers of X → B are elliptic curves, the core morphism of X (as defined [Cam11,
Definition 10.2]) must contract them, so that (B,∆) is the core of X. We do not use this in what
follows.

Despite the employed terminology, due to possible “codimension two phenomena”, it is not at all
clear that, given a fibration f : X → Y with orbifold base ∆f the morphism f : X → Y induces an
orbifold map X → (Y,∆f ); see [JR22, Section 3.7] for a discussion. Fortunately, for a BT-threefold
X, it is easy to see that X → (B,∆) is a flat orbifold morphism:

Lemma 8.3. If X is a BT-threefold, then the morphism X → (B,∆) is flat and orbifold.

Proof. Since X → B is a base change of the flat morphism S → P1, it follows that X → B is flat.
In particular, the morphism X → B has no exceptional divisors. Thus, the morphism X → (B,∆)
satisfies the orbifold condition by construction. �

The construction in [BT04] can be summarized by saying that BT-threefolds exist. We will need
the following improvement of their result due to Campana–Păun [CP07, Section 2].

Theorem 8.4 (Bogomolov–Tschinkel, Campana–Păun). BTCP-threefolds exist.

Proof. This result is proven in Sections 2.2 and 2.3 of [CP07]. Indeed, in loc. cit. the authors
construct a smooth projective surface S and a non-isotrivial elliptic fibration ψ : S → P1 with
precisely one multiple fiber ψ−1(0). Moreover, they construct a smooth projective surface B of
Kodaira dimension one and a morphism φ : B → P1 with the desired properties. The only condition
that is not explicitly verified in loc. cit. is that the elliptic fibration on B is non-isotrivial. However,
as their construction shows in Section 2.3 of loc. cit., the minimal model B0 of B can be taken to
be a double cover of P1×P1 ramified along any smooth divisor R of type (2(k+ 2), 4) with k some
sufficiently large integer. Choosing R general enough, the resulting elliptic surfaces B0 and B are
non-isotrivial. �

Our work culminates in the following results on Campana’s conjecture for the general type
orbifold surface (B,∆).

Corollary 8.5. Let k be a field of characteristic zero. If X is a BTCP-threefold over k with
associated elliptic fibration X → (B,∆), then the following statements hold.

(1) There is a proper closed subset Z ⊂ Bk such that the smooth projective orbifold (Bk,∆k) is

algebraically hyperbolic modulo Z and of general type over k.
(2) If k is finitely generated over Q, L/k is a finitely generated field extension and V is smooth

variety over L, then the set of orbifold near-maps f : V (BL,∆L) with f(VL) 6⊂ ZL is
finite.

Proof. Since c1(B,∆)2 > c2(B,∆), it follows that the smooth projective orbifold (B,∆) is pseudo-
algebraically hyperbolic and of general type (Theorem 6.5). This proves the first statement. Simi-
larly, since c1(B,∆)2 > c2(B,∆), the second statement follows from Theorem 2.7. �

Remark 8.6. Corollary 8.5.(2) is false over algebraically closed fields. That is, there is a BTCP-
threefold X over C with core (B,∆) and a smooth projective curve C such that the set of non-
constant maps C → (B,∆) is dense in B.

8.1. Non-density of non-constant rational points. In [CP07], Campana and Păun verified
that the analytic space Xan associated to a (non-special) BTCP-threefold X does not have a
Zariski dense entire curve (see also [Rou10, Theorem 6.11]) by showing that the orbifold (Ban,∆an)
is pseudo-Brody hyperbolic. Note that Theorem 1.2 below is an arithmetic analogue of Campana–
Păun’s result.

Lemma 8.7. Let A be an abelian variety over a finitely generated field k of characteristic zero.
Then the set of k-isomorphism classes of abelian varieties B dominated by A is finite.
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Proof. Up to isogeny, A is a product of simple abelian varieties A1, . . . , An. If A dominates an
abelian variety B, then B is isogenous to

∏
i∈I Ai with I ⊆ {1, ..., n}, so that there are only finitely

many isogeny classes that B could be in. However, by Faltings’s Isogeny Theorem [Fal84], the set
of k-isomorphism classes of abelian varieties B over k which are isogenous to a fixed abelian variety
(over k) is finite. �

Corollary 8.8. Let V be a variety over a finitely generated field k of characteristic zero. Then the
set of k-isomorphism classes of abelian varieties B dominated by V is finite.

Proof. Let V be a smooth projective variety birational to V . If V dominates an abelian variety B,
then there is a surjective morphism V → B (as B has no rational curves). Now, by the universal
property of Albanese varieties, if V dominates B, it follows that the Albanese variety Alb(V ) of V
dominates B, so that the corollary follows from Lemma 8.7. �

Lemma 8.9. Let B be a variety over a finitely generated field k of characteristic zero and let
X → B be an elliptic fibration. Let V be a variety. If the set of b in B(k) such that V dominates
Xb is dense in B, then X → B is isotrivial.

Proof. By Corollary 8.8, V dominates only finitely many elliptic curves over k. Let B0 ⊆ B be the
smooth locus of X → B. Let j : B0 → A1 be the moduli map (or j-invariant) of the Jacobian of
X|B0 → B0. Since there is a dense subset of B over which all fibers are pairwise isomorphic, the
morphism j is constant. �

Proof of Theorem 1.2. Let V be a variety over k. Assume that we have a sequence fi : V X
of orbifold near-maps which are dense in XK(V ). Let π : X → (B,∆) be the associated elliptic
fibration. It follows from Corollary 8.5.(2) that the set of non-constant orbifold near-maps V
(B,∆) is not dense in BK(V ). Since X → (B,∆) is a flat orbifold map (Lemma 8.3), we obtain that
the set of non-constant near-maps V X for which V X → B is non-constant is not dense in
XK(V ). Therefore, replacing fi by a suitable subsequence, we may assume that each composition
π ◦ fi : V B is constant. Let bi be the image of π ◦ fi. Since V is geometrically connected over
k, it follows that bi is a k-point of B. Moreover, since the set {bi | i ∈ Z≥1} is dense in B and V
dominates Xbi for every i, we obtain that X → B is isotrivial (Lemma 8.9) which contradicts the
fact that X → B is non-isotrivial (by definition). �

Remark 8.10. Let X be a BTCP-threefold over a finitely generated field K of characteristic zero
and let π : X → (B,∆) be the associated elliptic fibration. Let Z ⊂ BK be as in Corollary 8.5.
Then, the proof of Theorem 1.2 shows that, for V a variety over K, for all but finitely many non-
constant rational maps f : V X, the image of f is contained in a fibre of X → B over a K-point
of B or in π−1Z.

Remark 8.11. Theorem 1.2 is false over algebraically closed fields. Indeed, for every BTCP-
threefold X over an algebraically closed field k of characteristic zero and every elliptic curve E
over k, one can show that the set of morphisms E → X is dense in XK(E). We conclude that the
conclusion of Theorem 8.4 is optimal (and truly of arithmetic nature).

8.2. Geometrically special varieties. In this section, we assume that k is algebraically closed
(of characteristic zero).

Recall that (X,∆) is pseudo−1-bounded (over k) if there is a proper closed subset E ( X
containing ∆ such that (X,∆) is 1-bounded modulo E. If ∆ = ∅, then it is not hard to show that
pseudo-1-boundedness implies finiteness of pointed maps using bend-and-break. However, in the
more general orbifold setting (with ∆ not necessarily empty), we can only show the non-density of
pointed maps, assuming in addition two-dimensionality, non-uniruledness, and bigness of KX + ∆.
Let us be more precise.

Following [JR22, Definition 3.12], an orbifold (X,∆) over k is geometrically-special over k if, for
every dense open subset U ⊆ X, there exists a smooth projective connected curve C over k, a

19



point c in C(k), a point u in U(k) \ ∆, and a sequence of pairwise distinct orbifold morphisms
fi : C → (X,∆) with fi(c) = u for i = 1, 2, . . . such that ∪iΓfi is dense in C ×X.

Corollary 8.12. Let (X,∆) be a smooth projective orbifold surface with X non-uniruled. If (X,∆)
is of general type and pseudo-1-bounded, then (X,∆) is not geometrically-special.

Proof. Let Z ( X be a proper closed subset such that (X,∆) is 1-bounded modulo Z. Assume
(X,∆) is geometrically-special. Then, there is a point x in X \ Z, a smooth proper curve C, and
a point c in C(k) such that the universal evaluation map

C ×Homnc((C, c), ((X,∆), x)))→ C ×X
is dominant. Since H := Homnc((C, c), ((X,∆), x)) is a closed subscheme of Homnc(C, (X,∆)) \
Hom(C,Z) and the latter is of finite type over k, it follows that H is of finite type. In particular,
since C×H → C×X is dominant, we have that dimH ≥ dimX = 2. However, by our assumption
and Corollary 4.6, H is at most one-dimensional. This contradiction completes the proof. �

Theorem 8.13. If X is a BTCP-threefold, then X is not geometrically-special.

Proof. Suppose that X were geometrically-special. Consider the associated elliptic fibration X →
(B,∆). Since X → (B,∆) is a surjective orbifold morphism (Lemma 8.3), the orbifold pair (B,∆)
is geometrically-special [JR22, Lemma 3.14]. However, since B is non-uniruled and (B,∆) is a
pseudo-algebraically hyperbolic orbifold surface of general type (Corollary 8.5), the orbifold (B,∆)
is not geometrically-special (Corollary 8.12). This contradiction concludes the proof. �
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