ON ALGEBRAIC HYPERBOLICITY

ERWAN ROUSSEAU

Abstract

Conjectures of Lang and Vojta state that varieties of general type should be weakly algebraically hyperbolic. In particular, curves of bounded geometric genus lying on such a variety form a bounded family. We describe some recent results related to algebraic hyperbolicity. We focus on some connections between recent results of Miyaoka on the canonical degree of curves on surfaces of general type and the theory of orbifold pairs developed by Campana.

CONTENTS

1. Introduction 1
2. The approach via foliations 2
3. Orbifold Bogomolov-Miyaoka-Yau inequalities 3
4. Applications 9
References 11

1. Introduction

Following ideas of Lang, it is generally expected that Kobayashi hyperbolicity, which is of analytic nature, could be characterized by purely algebraic properties. In this direction, Demailly [Dem97] made the following observation.

Theorem 1.1. Let X be a Kobayashi hyperbolic complex projective variety. Then there exists $\epsilon>0$ such that every irreducible algebraic curve $\mathcal{C} \subset X$ satisfies

$$
\begin{equation*}
-\chi(\tilde{\mathcal{C}})=2 g(\tilde{\mathcal{C}})-2 \geq \epsilon \operatorname{deg} \tilde{\mathcal{C}} \tag{1.1.1}
\end{equation*}
$$

where $\tilde{\mathcal{C}}$ is the normalization of \mathcal{C}.
This motivates the following purely algebraic definition.
Definition 1.2. Let X be a complex projective variety. X is said to be algebraically hyperbolic if 1.1.1 holds for all irreducible algebraic curve $\mathcal{C} \subset X$.

One of the interests of this definition is that it is related to Lang-Vojta's conjectures on function fields. Let us formulate one of these geometric Lang-Vojta's conjectures in the setting of logarithmic pairs of general type, making clear the connection with algebraic hyperbolicity.

Conjecture 1.3. Let X be a complex projective manifold, $D \subset X$ a normal crossing divisor. If (X, D) is of log-general type then there exists a proper subvariety $Z \subset X$ and real numbers A and B such that

$$
\begin{equation*}
\operatorname{deg} f(C) \leq A(2 g(C)-2+|S|)+B \tag{1.3.1}
\end{equation*}
$$

for all smooth projective curves C, finite morphisms $f: C \rightarrow X$ and finite subsets $S \subset C$ such that $f^{-1}(D) \subset S$ and $f(C) \not \subset Z$.

[^0]Complex manifolds satisfying the weaker condition 1.3 .1 are said to be weakly algebraically hyperbolic.

The surface case in Conjecture 1.3 is still open, even when $X=\mathbb{P}^{2}$. Nevertheless, important results have been obtained towards this geometric Lang-Vojta's conjecture.

In the case of $X=\mathbb{P}^{n}$, the conjecture is solved independently by [Che04] and [PR07] for very general normal crossing divisors $D \subset X$ of degree $\operatorname{deg} D \geq 2 n+1$. For $n=2$, some results have been obtained when $\operatorname{deg} D=4$ using arithmetic methods on function fields. The four line case follows from an extension of Mason's ABC theorem [BM86] and the three components case can be reduced to a S-unit gcd problem [CZ08].

Several interesting results have also been obtained on quotients of bounded symmetric domains (see the interesting paper [ACLG12] for a discussion of conjecture 1.3 in this context). In [Fal83], Faltings establishes the following boundedness results for families $p: X \rightarrow C \backslash S$ of principally polarized abelian varieties of relative dimension g with level structures $n \geq 3$: for all such induced morphisms to the moduli space $\phi: C \rightarrow \overline{\mathcal{A}}_{g, n}$ one has the inequality $\operatorname{deg} \phi^{*}(K+D) \leq g(3 g(C)+$ $|S|+1)$, where K is the canonical divisor of $\overline{\mathcal{A}}_{g, n}$ and D is the compactification divisor which can be assumed to be normal crossing. This was improved later by $\operatorname{Kim}[\operatorname{Kim} 98]$ obtaining the inequality $\operatorname{deg} \phi^{*}(K+D) \leq \frac{g(g+1)}{2}(2 g(C)-2+|S|)$ which is exactly conjecture 1.3 in this setting. Recently, a similar result has been obtained in [RT18] for families of abelian varieties with real multiplication, thus establishing conjecture 1.3 for Hilbert modular varieties.

In dimension 2, for the compact case (i.e. $D=0$), the first striking result is a theorem of Bogomolov [Bog77] proving conjecture 1.3 for surfaces of general type with positive second Segre number $s_{2}:=c_{1}^{2}-c_{2}$. Recently, in the same setting, Miyaoka [Miy08] gives an alternative proof of this statement obtaining effective constants as functions of c_{1}^{2} and c_{2} in the inequality 1.3.1. Moreover, when the curve $C \subset X$ is supposed to be smooth, Miyaoka [Miy08] shows that $K_{X} . C \leq \frac{3}{2}(2 g-2)+o(g)$. These results are not only striking illustrations of LangVojta's conjectures but we will try to explain that the method of proof is also interesting since it can be translated into an application of the theory advertised by Campana [Cam04] of the orbifold category.

In section 2, we review the ideas dating back to Bogomolov [Bog77] showing how the theory of foliations can be used to derive algebraic hyperbolicity of surfaces with positive Segre class. In section 3, we recall the classical Bogomolov-Miyaoka-Yau inequality and explain how some more recent inequalities of Miyaoka [Miy08] can be interpreted in the category of orbifold pairs (in the sense of Campana). We also give some new higher dimensional generalizations of these orbifold inequalities using recent results of Campana and Păun [CP15]. Finally in section 4, we explain how these results imply the above mentioned results of Miyaoka [Miy08] as well as some results of [$\mathrm{BHK}^{+} 13$] on the finiteness of smooth Shimura curves on compact Hilbert modular surfaces.
Acknowledgements. The author is grateful to the referee for many useful comments which improved the exposition.

2. THE APPROACH VIA FOLIATIONS

Following ideas of Bogomolov [Bog77], one obtains a positive answer for some surfaces.
Theorem 2.1. Let (X, D) be a log-smooth surface of log-general-type such that its logChern classes satisfy $c_{1}^{2}>c_{2}$. Then (X, D) satisfies conjecture 1.3.

Proof. Under the hypothesis $c_{1}^{2}>c_{2}$, one obtains that $T_{X}^{*}(\log D)$ is big. Indeed, by Riemann-Roch

$$
\chi\left(X, S^{m} T_{X}^{*}(\log D)\right)=\frac{m^{3}}{6}\left(c_{1}^{2}-c_{2}\right)+O\left(m^{2}\right)
$$

Therefore $h^{0}\left(X, S^{m} T_{X}^{*}(\log D)\right)+h^{2}\left(X, S^{m} T_{X}^{*}(\log D)\right)>\mathrm{cm}^{3}$. Now, by Serre duality and the isomorphism $\left(K_{X} \otimes D\right) \otimes T_{X}(-\log D)=T_{X}^{*}(\log D)$, we have $h^{2}\left(X, S^{m} T_{X}^{*}(\log D)\right)=h^{0}\left(X,\left(K_{X} \otimes D\right)^{(-m)} \otimes K_{X} \otimes S^{m} T_{X}^{*}(\log D)\right) \leq$ $h^{0}\left(X, S^{m} T_{X}^{*}(\log D)\right)$. The last inequality comes from the fact that (X, D) is of general type and in particular, $\left(K_{X} \otimes D\right)^{m} \otimes K_{X}^{-1}$ is effective for large m. Finally, we obtain $h^{0}\left(X, S^{m} T_{X}^{*}(\log D)\right)>\frac{c}{2} m^{3}$ and $T_{X}^{*}(\log D)$ is big.

So we have a section $\omega \in H^{0}\left(X, S^{m} T_{X}^{*}(\log D) \otimes A^{-1}\right)$, where A is any line bundle. The morphism $f: C \rightarrow X$ induces a morphism $f^{\prime}: C \rightarrow \mathbb{P}\left(T_{X}(-\log D)\right)$.

By definition we have an inclusion $f^{\prime *}(\mathcal{O}(1)) \hookrightarrow K_{C}\left(f^{*}(D)_{\text {red }}\right)$. So we easily obtain the algebraic tautological inequality

$$
\operatorname{deg}_{C}\left(f^{\prime *}(\mathcal{O}(1)) \leq 2 g(C)-2+N_{1}\left(f^{*} D\right)\right.
$$

If $f^{\prime}(C) \not \subset Z$ then the previous inequality gives

$$
\frac{1}{m} \operatorname{deg} f^{*} A \leq 2 g(C)-2+N_{1}\left(f^{*} D\right)
$$

Now, let us suppose that $f^{\prime}(C) \subset Z$ and that Z is an irreducible horizontal surface. Then Z is equipped with a tautological holomorphic foliation by curves: if $z \in Z$ is a generic point, a neighbourhood U of z induces a foliation on a neighbourhood V of $x=\pi(z)$. Indeed, a point in $U \subset \mathbb{P}\left(T_{X}(-\log D)\right)$ is of the form $(w,[t])$ where w is a point in X and t a tangent vector at this point. This foliation lifts through the isomorphism $U \rightarrow V$ induced by π. Leaves are just the derivatives of leaves on V. Tautologically, $f^{\prime}: C \rightarrow Z$ is a leaf. By a theorem of Jouanolou [Jou78]: either Z has finitely many algebraic leaves or it is a fibration. In both cases, one obtains immediately that $\operatorname{deg} f^{*}(A)$ has to be bounded.

Corollary 2.2. Let $X=\mathbb{P}^{2}$ and $D=\sum_{i=1}^{r} C_{i}$ a normal crossing curve where C_{i} is a curve of degree $d_{i}, d_{1} \leq d_{2} \cdots \leq d_{r}$. Then $\left(\mathbb{P}^{2}, D\right)$ satisfies conjecture 1.3 if $r \geq 5$ or, $r=4$ and $d_{4} \geq 2 ; r=3$ and $d_{1} \geq 2, d_{3} \geq 3$ or $d_{1}=1, d_{2} \geq 3, d_{3} \geq 4 ; r=2$ and $d_{1} \geq 5$ or $d_{1} \geq 4, d_{2} \geq 7$.

Proof. Let $d:=\sum d_{i}$. One has $c_{1}^{2}-c_{2}=6-3 d+\sum_{i<j} d_{i} d_{j}$. From theorem 2.1, one immediately obtains the result.

3. Orbifold Bogomolov-Miyaoka-Yau inequalities

3.1. The classical Bogomolov-Miyaoka-Yau inequality. Let us start with the following classical statement.

Theorem 3.1. [Miy84] Let (X, D) be a log-smooth surface with reduced boundary. Let \mathcal{E} be a rank 2 reflexive subsheaf of $\Omega_{X}(\log D)$. If $c_{1}(\mathcal{E})$ is pseudoeffective, then

$$
\begin{equation*}
c_{1}(\mathcal{E})^{2} \leq 3 c_{2}(\mathcal{E}) \tag{3.1.1}
\end{equation*}
$$

We will give a simple proof of this theorem following [Lan01]. First, we need some lemmas. Recall that $c_{1}(\mathcal{E})$ being pseudoeffective, one has a canonical (Zariski) decomposition $c_{1}(\mathcal{E})=P+N$ where P is a nef Q-divisor (the positive part), $N=\sum a_{j} D_{j}$ is an effective Q-divisor (the negative part) such that the Gram matrix $\left(D_{i} \cdot D_{j}\right)$ is negative definite, and P is orthogonal to N with respect to the intersection form. We will also need the following theorem of Bogomolov [Bog78].

Theorem 3.2. Let X be a projective manifold, D a normal crossing divisor on X and $L \subset \Omega_{X}^{p}(\log D)$ a coherent subsheaf of rank 1 . Then $\kappa(X, L) \leq p$.

Now, we can state the first lemma we need.
Lemma 3.3. If $h^{0}(X, \mathcal{E}(-C)) \neq 0$ and $L \cdot\left(C-\frac{1}{2} N\right)>0$ for some nef divisor L then $C \cdot P \leq c_{2}(\mathcal{E})-\frac{1}{4} N^{2}$.
Proof. Consider the exact sequence $0 \rightarrow \mathcal{O}(C) \rightarrow \mathcal{E} \rightarrow \mathcal{E} / \mathcal{O}(C) \rightarrow 0$. Then $c_{2}(\mathcal{E})=c_{1}(\mathcal{O}(C)) \cdot c_{1}(\mathcal{E} / \mathcal{O}(C))=C \cdot\left(c_{1}(\mathcal{E})-C\right)=P \cdot C+\frac{1}{4} N^{2}-\left(C-\frac{1}{2} N\right)^{2}$. $H^{0}(X, C) \hookrightarrow H^{0}\left(X, \Omega_{X}(\log D)\right)$ so, by Bogomolov's theorem 3.2, $\kappa\left(X, C-\frac{1}{2} N\right) \leq$ $\kappa(X, C) \leq 1$. Next, observe that $h^{2}\left(X, m\left(C-\frac{1}{2} N\right)=0\right.$ for $m \gg 0$ otherwise by Serre duality one would obtain $\left.L \cdot\left(C-\frac{1}{2} N\right)\right) \leq 0$. Therefore by Riemann-Roch $\left(C-\frac{1}{2} N\right)^{2} \leq 0$, which concludes the proof.

We need the following generalization.
Lemma 3.4. If $h^{0}\left(X, S^{n} \mathcal{E}(-C)\right) \neq 0$ and $L \cdot\left(C-\frac{n}{2} N\right)>0$ for some nef divisor L then $C \cdot P \leq n\left(\mathcal{C}_{2}(\mathcal{E})-\frac{1}{4} N^{2}\right)$.
Proof. Let $s \in H^{0}\left(X, S^{n} \mathcal{E}(-C)\right)$. Let us take a generically finite morphism $f: Y \rightarrow$ X such that $f^{*} s=s_{1} \ldots s_{n}$ where $s_{i} \in H^{0}\left(X, f^{*} \mathcal{E}\left(-C_{i}\right)\right)$. We note $f^{*} C=\sum C_{i}$. Therefore $\left.\left.\left(\sum C_{i}-\frac{n}{2} f^{*} N\right)\right) \cdot f^{*} L=\operatorname{deg} f \cdot\left(C-\frac{n}{2} N\right)\right) . L>0$. By the preceding lemma, if $\left(C_{i}-\frac{1}{2} f^{*} N\right) \cdot f^{*} L>0$ (which has to be verified for at least one i) or $C_{i} \cdot f^{*} P=\left(C_{i}-\frac{1}{2} f^{*} N\right) \cdot f^{*} P>0$ then

$$
C_{i} \cdot f^{*} P \leq c_{2}\left(f^{*} \mathcal{E}\right)-\frac{1}{4}\left(f^{*} N\right)^{2}=\operatorname{deg} f\left(c_{2}(\mathcal{E})-\frac{1}{4} N^{2}\right)
$$

In the possible remaining cases where $C_{i} \cdot f^{*} P=0$ one has also $C_{i} \cdot f^{*} P=0 \leq$ $c_{2}\left(f^{*} \mathcal{E}\right)-\frac{1}{4}\left(f^{*} N\right)^{2}$. To finish, we take the sum of all these inequalities.

Now, we can prove Theorem 3.1
Proof. Recall that $N^{2} \leq 0$ by property of the Zariski decomposition. Let us prove that $c_{1}(\mathcal{E})^{2} \leq 3 c_{2}(\mathcal{E})+\frac{1}{4} N^{2}$ i.e.

$$
\frac{1}{3} P^{2} \leq c_{2}(\mathcal{E})-\frac{1}{4} N^{2}
$$

If $h^{0}\left(X, S^{n} \mathcal{E}\left(-\left(\frac{n}{2} N+n a P+H\right)\right)\right) \neq 0$ for some ample divisor H and $a \geq \frac{1}{3}$ then

$$
\frac{1}{3} n P^{2} \leq n a P^{2} \leq P \cdot(n a P+H) \leq n\left(c_{2}(\mathcal{E})-\frac{1}{4} N^{2}\right)
$$

by the above lemma.
So we assume $h^{0}\left(X, S^{n} \mathcal{E}\left(-\left(\frac{n}{2} N+n a P+H\right)\right)\right)=0$ for all $a \geq \frac{1}{3}$ and all $n \geq 1$.

$$
\begin{gathered}
h^{2}\left(X, S^{n} \mathcal{E}\left(-\left(\frac{n}{2} N+n a P+H\right)\right)\right)=h^{0}\left(X, S^{n} \mathcal{E}\left(-\frac{n}{2} N+(n a-n) P+H+K_{X}\right)\right) \\
\leq h^{0}\left(X, S^{n} \mathcal{E}\left(-\frac{n}{2} N-n(1-a) P-H\right)\right)+O\left(n^{2}\right)
\end{gathered}
$$

So for $a=\frac{1}{3}$, we have $\chi\left(X, S^{n} \mathcal{E}\left(-\left(\frac{n}{2} N-\frac{n}{3} P-H\right)\right)\right) \leq O\left(n^{2}\right)$.

By Riemann-Roch,

$$
\begin{aligned}
& \chi\left(X, S^{n} \mathcal{E}\left(-\left(\frac{n}{2} N+\frac{n}{3} P+H\right)\right)\right)=\frac{n^{3}}{6}\left(c_{1}^{2}\left(\mathcal{E}\left(-\left(\frac{1}{2} N+\frac{1}{3} P\right)\right)\right)-c_{2}\left(\mathcal{E}\left(-\left(\frac{1}{2} N+\frac{1}{3} P\right)\right)\right)+O\left(n^{2}\right)\right. \\
&=\frac{n^{3}}{6}\left(\frac{1}{4} N^{2}+\frac{1}{3} P^{2}-c_{2}(\mathcal{E})\right)+O\left(n^{2}\right)
\end{aligned}
$$

3.2. Orbifold Bogomolov-Miyaoka-Yau inequalities. Let us start by introducing some notations. Following Campana [Cam04] and the recent survey [Cla15], we will call orbifold the data (X, Δ) of a log-smooth pair where X is a smooth complex manifold, the support of the divisor Δ is normal crossing and its coefficients are rational numbers belonging to $[0,1]$ such that

$$
\Delta=\sum_{i}\left(1-\frac{b_{i}}{a_{i}}\right) \Delta_{i},
$$

with the following conventions:

- if $1-\frac{b_{i}}{a_{i}}<1$, the integers a_{i} and b_{i} are coprime and verify $0<b_{i}<a_{i}$;
- if $1-\frac{b_{i}}{a_{i}}=1$, we put $a_{i}=1$ and $b_{i}=0$.

The general philosophy is that we will attach to this pair all the objects that are usually attached to manifolds, defining them on suitable coverings.
Definition 3.5. An adapted cover to the pair (X, Δ) is the data of a Galois cover $\pi: Y \rightarrow X$ such that:
(3.5.1) Y is smooth projective.
(3.5.2) π ramifies exactly at order a_{i} over $\Delta_{i}: \pi^{*}\left(\Delta_{i}\right)=\sum_{j} a_{i} D_{j}^{i}$
(3.5.3) the support of the divisor $\pi^{*} \Delta+\operatorname{Ram}(\pi)$ is normal crossing as well as the branch locus.

Remark 3.6. It is now classical that such coverings always exist (see [Laz04], prop. 4.1.12).

In local coordinates, the description of these coverings is quite simple. It is of the following form:

$$
\pi\left(w_{1}, \ldots, w_{n}\right)=\left(w_{1}^{a_{1}}, \ldots, w_{k}^{a_{k}}, w_{k+1}, \ldots, w_{n-j}, w_{n-j+1}^{m_{j}}, \ldots, w_{n}^{m_{1}}\right)
$$

Let us now define the orbifold cotangent bundle. The idea is that this sheaf should be generated by $\frac{d z_{i}}{z_{i}^{1-b_{i} / a_{i}}}$.

The key observation is that we have a residue map $\pi^{*} \Omega_{X}(\log \lceil\Delta\rceil) \rightarrow \bigoplus_{i} \mathcal{O}_{b_{i} D^{i}}$, where $D^{i}:=\frac{1}{a_{i}} \pi^{*} \Delta_{i}$.

Definition 3.7. We define the orbifold cotangent bundle $\Omega(\pi, \Delta)$ to be the kernel of this residue map. In other words, it is defined by the exact sequence

$$
0 \rightarrow \Omega(\pi, \Delta) \rightarrow \pi^{*} \Omega_{X}(\log \lceil\Delta\rceil) \rightarrow \bigoplus_{i} \mathcal{O}_{b_{i} D^{i}} \rightarrow 0
$$

Remark 3.8. The notation $\Omega(\pi, \Delta)$ is here to insist that this bundle exists only on the total space of π.

Let us define orbifold Chern classes as the Chern classes of the orbifold cotangent bundle.
Definition 3.9.

$$
c_{i}(X, \Delta):=c_{i}(\Omega(\pi, \Delta)) .
$$

We may now compute orbifold Chern classes in terms of the pair (X, Δ).
Proposition 3.10. Let (X, Δ) be an orbifold surface. Then:

$$
\begin{gathered}
c_{1}(X, \Delta):=\pi^{*}\left(K_{X}+\Delta\right) \\
c_{2}(X, \Delta):=\operatorname{deg} \pi \cdot\left(c_{2}(X)-\chi(\Delta)\right)
\end{gathered}
$$

where

$$
\chi(\Delta)=\sum_{i}\left(1-\frac{b_{i}}{a_{i}}\right) \chi\left(\Delta_{i}\right)-\sum_{i<j}\left(1-\frac{b_{i}}{a_{i}}\right)\left(1-\frac{b_{j}}{a_{j}}\right) \Delta_{i} \cdot \Delta_{j} .
$$

Proof. Let $\pi: Y \rightarrow X$ be an adapted cover. We have the exact sequence

$$
0 \rightarrow \Omega(\pi, \Delta) \rightarrow \pi^{*} \Omega_{X}(\log \lceil\Delta\rceil) \rightarrow \bigoplus_{i} \mathcal{O}_{b_{i} D^{i}} \rightarrow 0
$$

Therefore we have the following equality between total Chern classes

$$
c\left(\pi^{*} \Omega_{X}(\log \lceil\Delta\rceil)\right)=c(\Omega(\pi, \Delta)) \cdot \prod_{i} c\left(\mathcal{O}_{b_{i} D^{i}}\right)
$$

Using the exact sequence

$$
0 \rightarrow \mathcal{O}\left(-b_{i} D^{i}\right) \rightarrow \mathcal{O}_{Y} \rightarrow \mathcal{O}_{b_{i} D^{i}} \rightarrow 0
$$

one obtains that $c_{1}\left(\mathcal{O}_{b_{i} D^{i}}\right)=b_{i} D^{i}$, and $c_{2}\left(\mathcal{O}_{b_{i} D^{i}}\right)=b_{i}^{2}\left(D^{i}\right)^{2}$.
For the first Chern class, we immediately obtain,

$$
c_{1}(\Omega(\pi, \Delta))=\pi^{*}\left(K_{X}+\lceil\Delta\rceil-\sum_{i} \frac{b_{i}}{a_{i}} \Delta_{i}\right) .
$$

For the second Chern class,

$$
\begin{aligned}
c_{2}(\Omega(\pi, \Delta))= & c_{2}\left(\pi^{*} \Omega_{X}(\log [\Delta\rceil)-\sum_{i<j} b_{i} b_{j} D_{i} D_{j}-\sum_{i} b_{i}^{2}\left(D^{i}\right)^{2}-c_{1} \cdot \sum_{i} b_{i} D_{i}\right. \\
= & \operatorname{deg} \pi \cdot\left(c_{2}(X)-\sum_{i} \chi\left(\Delta_{i}\right)+\sum_{i<j} \Delta_{i} \cdot \Delta_{j}-\sum_{i<j} \frac{b_{i}}{a_{i}} \frac{b_{j}}{a_{j}} \Delta_{i} \cdot \Delta_{j}\right. \\
& \left.-\sum_{i} \frac{b_{i}^{2}}{a_{i}^{2}} \Delta_{i}^{2}-\left(K_{X}+\Delta\right) \cdot \sum_{i} \frac{b_{i}}{a_{i}} \Delta_{i}\right) \\
= & \operatorname{deg} \pi \cdot\left(c_{2}(X)-\sum_{i} \chi\left(\Delta_{i}\right)+\sum_{i<j} \Delta_{i} \cdot \Delta_{j}-\sum_{i<j} \frac{b_{i}}{a_{i}} \frac{b_{j}}{a_{j}} \Delta_{i} \cdot \Delta_{j}-\sum_{i} \frac{b_{i}^{2}}{a_{i}^{2}} \Delta_{i}^{2}\right. \\
& \left.-\sum_{i} \frac{b_{i}}{a_{i}} K_{X} \cdot \Delta_{i}-\sum_{i, j} \frac{b_{i}}{a_{i}} \Delta_{i} \cdot \Delta_{j}+\sum_{i, j} \frac{b_{i}}{a_{i}} \frac{b_{j}}{a_{j}} \Delta_{i} \cdot \Delta_{j}\right) . \\
= & \operatorname{deg} \pi \cdot\left(c_{2}(X)-\sum_{i} \chi\left(\Delta_{i}\right)+\sum_{i<j} \Delta_{i} \cdot \Delta_{j}+\sum_{i<j} \frac{b_{i}}{a_{i}} \frac{b_{j}}{a_{j}} \Delta_{i} \cdot \Delta_{j}\right. \\
& \left.-\sum^{2} \frac{b_{i}}{a_{i}}\left(K_{X}+\Delta_{i}\right) \cdot \Delta_{i}-\sum_{i<j}\left(\frac{b_{i}}{a_{i}}+\frac{b_{j}}{a_{j}}\right) \Delta_{i} \cdot \Delta_{j}\right) \\
= & \operatorname{deg} \pi \cdot\left(c_{2}(X)-\chi(\Delta)\right) .
\end{aligned}
$$

Remark 3.11. One should notice that the above formula for $c_{2}(X, \Delta)$ interpolates between the compact case $\Delta=0$ (where $c_{2}(X)=\chi(X)$) and the logarithmic case $\Delta=\lceil\Delta\rceil$ (where $\left.c_{2}(X, \Delta)=\chi(X-|\Delta|)\right)$. Moreover, one sees that $\chi(\Delta)$ can be computed by repeated applications of the basic formula $\chi\left(\Delta_{1}+\Delta_{2}\right)=\chi\left(\Delta_{1}\right)+$ $\chi\left(\Delta_{2}\right)-\Delta_{1} \cdot \Delta_{2}$.

Now we can state the following orbifold Bogomolov-Miyaoka-Yau inequality.
Corollary 3.12. Let (X, Δ) be an orbifold surface. If $K_{X}+\Delta$ is pseudoeffective then:

$$
\begin{equation*}
\left(K_{X}+\Delta\right)^{2} \leq 3\left(c_{2}(X)-\chi(\Delta)\right) \tag{3.12.1}
\end{equation*}
$$

Proof. One just applies theorem 3.1 to the orbifold cotangent bundle $\Omega(\pi, \Delta)$, use proposition 3.10 and divide by $\operatorname{deg} \pi$.
3.3. The higher dimensional case. We will extend the orbifold Bogomolov-Miyaoka-Yau inequality to higher dimension.

Theorem 3.13. Let (X, Δ) be an orbifold where X is a complex manifold of dimension $n \geq 2$. If $K_{X}+\Delta$ is nef then for arbitrary ample divisors H_{1}, \ldots, H_{n-2} and each adapted cover $\pi: Y \rightarrow X$:

$$
\begin{equation*}
c_{1}(X, \Delta)^{2} \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \leq 3 c_{2}(X, \Delta) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) . \tag{3.13.1}
\end{equation*}
$$

Remark 3.14. In the logarithmic case (i.e. all coefficients of Δ are equal to 1), a much stronger inequality than 3.13 .1 is claimed in [LM97] since $K_{X}+D$ is only assumed to be pseudo-effective. Unfortunately, a gap in the proof has been recently found.

We will adapt the proof of Miyaoka [Miy87] using the recent result of [CP15].
Theorem 3.15. Let (X, Δ) be an orbifold with $K_{X}+\Delta$ pseudoeffective and $\pi: Y \rightarrow X$ an adapted cover. Then $\Omega(\pi, \Delta)$ is generically semipositive in the following sense: let H_{1}, \ldots, H_{n-1} be ample divisors, then any quotient $\Omega(\pi, \Delta)^{\otimes m} \rightarrow Q$ has nonnegative degree on $\pi^{*}\left(H_{1} \ldots H_{n-1}\right)$.

Recall now the classical Bogomolov-Gieseker inequality.
Theorem 3.16. Let S be a smooth projective surface. If \mathscr{E} is an H-semistable sheaf of rank r on S (H is an ample divisor), then

$$
(r-1) c_{1}^{2}(\mathscr{E}) \leq 2 r c_{2}(\mathscr{E})
$$

Let us now give the proof of theorem 3.13.
Proof. Let $\mathscr{E}:=\Omega(\pi, \Delta)$. Let $0=\mathscr{E}_{0} \subset \mathscr{E}_{1} \subset \cdots \subset \mathscr{E}_{S}=\mathscr{E}$ be the $\pi^{*}\left(H_{1}, \ldots, H_{n-2}, K_{X}+\Delta\right)$-semistable filtration. Put $\mathcal{G}_{i}=\mathscr{E}_{i} / \mathscr{E}_{i-1}, r_{i}=\operatorname{rank} \mathcal{G}_{i}$, and α_{i} such that

$$
r_{i} \cdot \alpha_{i}=\frac{c_{1}\left(\mathcal{G}_{i}\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\left(K_{X}+\Delta\right)\right)}{c_{1}(\mathscr{E}) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\left(K_{X}+\Delta\right)\right)}
$$

Then we have $r_{1} \cdot \alpha_{1}+\cdots+r_{s} \cdot \alpha_{s}=1$ and $\alpha_{1}>\cdots>\alpha_{s} \geq 0$, the last inequality coming from semipositivity of \mathscr{E} (3.15). In the following, we will make repeated use of the inequality

$$
r_{i}^{2} \alpha_{i}^{2} c_{1}^{2}(\mathscr{E}) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq c_{1}^{2}\left(\mathcal{G}_{i}\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right)
$$

which comes directly from the Hodge index theorem applied to the nef classes $c_{1}(\mathscr{E}), H_{1}, \ldots, H_{n-2}$.

Now, we have

$$
\left(2 c_{2}(\mathscr{E})-c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right)=\left(\sum_{i}\left(2 c_{2}\left(\mathcal{G}_{i}\right)-c_{1}^{2}\left(\mathcal{G}_{i}\right)\right)\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right)
$$

From Bogomolov-Gieseker inequality 3.16, we have

$$
2 c_{2}\left(\mathcal{G}_{i}\right)-c_{1}^{2}\left(\mathcal{G}_{i}\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq \frac{-1}{r_{i}} c_{1}^{2}\left(\mathcal{G}_{i}\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right)
$$

for all i.

So, we deduce

$$
\begin{array}{r}
\left(6 c_{2}(\mathscr{E})-2 c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq \\
\left(3\left(\sum_{i>1} \frac{-1}{r_{i}} c_{1}^{2}\left(\mathcal{G}_{i}\right)\right)+6 c_{2}\left(\mathscr{E}_{1}\right)-3 c_{1}^{2}\left(\mathscr{E}_{1}\right)+c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \tag{3.16.1}
\end{array}
$$

And finally,
$\left(6 c_{2}(\mathscr{E})-2 c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq\left(\left(1-3 \sum_{i>1} r_{i} \alpha_{i}^{2}\right) \cdot c_{1}^{2}(\mathscr{E})+6 c_{2}\left(\mathscr{E}_{1}\right)-3 c_{1}^{2}\left(\mathscr{E}_{1}\right)\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right)$.
There are three possibilities: $r_{1} \geq 3, r_{1}=2$ and $r_{1}=1$.
If $r_{1} \geq 3$, using Bogomolov-Gieseker inequality and the Hodge index theorem, we obtain

$$
\begin{array}{r}
\left(6 c_{2}(\mathscr{E})-2 c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq \\
\left(\left(1-3 \sum_{i>1} r_{i} \alpha_{i}^{2}\right) \cdot c_{1}^{2}(\mathscr{E})-3 \frac{1}{r_{1}} c_{1}^{2}\left(\mathscr{E}_{1}\right)\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq \\
\left(1-3 \sum_{i} r_{i} \alpha_{i}^{2}\right) \cdot c_{1}^{2}(\mathscr{E}) \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq\left(1-3 \alpha_{1}\right) c_{1}^{2}(\mathscr{E}) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq 0
\end{array}
$$

since $3 \alpha_{1} \leq r_{1} \alpha_{1} \leq \sum_{i} r_{i} \alpha_{i}=1$.
If $r_{1}=2$, let S be a general complete intersection surface of the linear systems $\pi^{*}\left|m_{i} H_{i}\right|$. We choose S general enough so that $\mathscr{E}_{1 \mid S}$ injects into $\Omega_{S}\left(\log \pi^{-1}\lceil\Delta\rceil_{\mid S}\right)$.

Using Theorem 3.1, we have either $\kappa\left(S, c_{1}\left(\mathscr{E}_{1 \mid S}\right)\right) \leq 0$ or $c_{1}^{2}\left(\mathscr{E}_{1 \mid S}\right) \leq 3 c_{2}\left(\mathscr{E}_{1 \mid S}\right)$.
In the case $\kappa\left(S, c_{1}\left(\mathscr{E}_{1 \mid S}\right)\right) \leq 0$, since $c_{1}\left(\mathscr{E}_{1 \mid S}\right) \cdot \pi^{*}\left(K_{X}+\Delta\right)>0$, we have $c_{1}^{2}\left(\mathscr{E}_{1 \mid S}\right) \leq 0$.

Applying Bogomolov-Gieseker inequality to 3.16.1:

$$
\begin{aligned}
&\left(6 c_{2}(\mathscr{E})-2 c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq \\
&\left(\left(1-3 \sum_{i>1} r_{i} \alpha_{i}^{2}\right) \cdot c_{1}^{2}(\mathscr{E})-\frac{3}{2} c_{1}^{2}\left(\mathscr{E}_{1}\right)\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq \\
&\left(1-3 \sum_{i>1} r_{i} \alpha_{i}^{2}\right) \cdot c_{1}^{2}(\mathscr{E}) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq \\
&\left(1-3 \alpha_{2} \sum_{i>1} r_{i} \alpha_{i}\right) \cdot c_{1}^{2}(\mathscr{E}) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right)= \\
&\left(1-3 \alpha_{2}\left(1-2 \alpha_{1}\right)\right) \cdot c_{1}^{2}(\mathscr{E}) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq \\
&\left(1-3 \alpha_{1}\left(1-2 \alpha_{1}\right)\right) \cdot c_{1}^{2}(\mathscr{E}) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right)= \\
&\left(6\left(\alpha_{1}-\frac{1}{4}\right)^{2}+\frac{5}{8}\right) \cdot c_{1}^{2}(\mathscr{E}) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq 0
\end{aligned}
$$

In the case $c_{1}^{2}\left(\mathscr{E}_{1 \mid S}\right) \leq 3 c_{2}\left(\mathscr{E}_{1 \mid S}\right)$, we have from 3.16.1:

$$
\begin{aligned}
\left(6 c_{2}(\mathscr{E})-2 c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) & \geq \\
\left(\left(1-3 \sum_{i>1} r_{i} \alpha_{i}^{2}\right) \cdot c_{1}^{2}(\mathscr{E})-c_{1}^{2}\left(\mathscr{E}_{1}\right)\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) & \geq \\
\left(\left(1-4 \alpha_{1}^{2}-3 \sum_{i>1} r_{i} \alpha_{i}^{2}\right) \cdot c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) & \geq \\
\left(\left(1-4 \alpha_{1}^{2}-3 \alpha_{2} \sum_{i>1} r_{i} \alpha_{i}\right) \cdot c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) & = \\
\left(\left(1-4 \alpha_{1}^{2}-3 \alpha_{2}\left(1-2 \alpha_{1}\right)\right) \cdot c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) & = \\
\left.\left(1-2 \alpha_{1}\right)\left(1+2 \alpha_{1}-3 \alpha_{2}\right) \cdot c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) . &
\end{aligned}
$$

As $3 \alpha_{2}<r_{1} \alpha_{1}+r_{2} \alpha_{2} \leq 1$, we have
$\left.\left(6 c_{2}(\mathscr{E})-2 c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq 2 \alpha_{1}\left(1-2 \alpha_{1}\right) c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq 0$.
Finally, if $r_{1}=1$, Theorem 3.2 implies that $\mathscr{E}_{1 \mid S} \subset \Omega_{S}\left(\log \pi^{-1}\lceil\Delta\rceil_{\mid S}\right)$ has Kodaira dimension at most one. Therefore $c_{1}^{2}\left(\mathscr{E}_{1 \mid S}\right) \leq 0$. From 3.16.1, one obtains:

$$
\begin{aligned}
&\left(6 c_{2}(\mathscr{E})-2 c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq \\
&\left(\left(1-3 \sum_{i>1} r_{i} \alpha_{i}^{2}\right) \cdot c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq \\
&\left(\left(1-3 \alpha_{1} \sum_{i>1} r_{i} \alpha_{i}\right) \cdot c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right)= \\
&\left(\left(1-3 \alpha_{1}\left(1-\alpha_{1}\right)\right) \cdot c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq \\
&\left.\left(1-\frac{3}{2}\left(1-\frac{1}{2}\right)\right) \cdot c_{1}^{2}(\mathscr{E}) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right)=\frac{1}{4} c_{1}^{2}(\mathscr{E})\right) \cdot \pi^{*}\left(H_{1} \ldots H_{n-2}\right) \geq 0
\end{aligned}
$$

4. Applications

First, let us recall the immediate application of the classical inequality 3.1.1.
Corollary 4.1. Let $C \subset X$ be a smooth curve in a surface X with pseudo-effective canonical bundle K_{X}. Then

$$
\begin{equation*}
K_{X} \cdot C \leq 2(2 g-2)+3 c_{2}-c_{1}^{2} . \tag{4.1.1}
\end{equation*}
$$

Proof. We apply the classical Bogomolov-Miyaoka-Yau inequality 3.1.1 to $\mathcal{E}=$ $T_{X}^{*}(\log C)$. This gives $c_{1}^{2}\left(T_{X}^{*}(\log C)\right) \leq 3 c_{2}\left(T_{X}^{*}(\log C)\right)$, i.e. $\left(K_{X}+C\right)^{2} \leq 3(\chi(X)-$ $\chi(C))$. Finally, we obtain $K_{X} \cdot C \leq 2(2 g-2)+3 c_{2}-c_{1}^{2}$.

We will now explain how the orbifold inequality 3.12.1 inequality improves the estimate 4.1.1.

First, let us observe that the orbifold inequality 3.12.1 easily implies the following theorem of Miyaoka [Miy08].
Theorem 4.2. Let X be a surface of non-negative Kodaira dimension and let C be a smooth curve of genus g on it. If $0 \leq \alpha \leq 1$ is a real number, then the inequality

$$
\begin{equation*}
\frac{\alpha^{2}}{2}\left(C^{2}+3 C \cdot K_{X}-6 g+6\right)-2 \alpha\left(C \cdot K_{X}-3 g+3\right)+3 c_{2}-c_{1}^{2} \geq 0 \tag{4.2.1}
\end{equation*}
$$

holds.
Proof. When $0 \leq \alpha \leq 1$ is a rational number, one applies the inequality 3.12.1 to the pair $(X, \alpha C)$ and easily gets 4.2.1.

Remark 4.3. We see that if one takes $\alpha=0$ then one recover the classical inequality $c_{1}^{2} \leq 3 c_{2}$, whereas if $\alpha=1$ one finds the logarithmic inequality of corollary 4.1. Therefore the inequality 4.2.1 interpolates between the compact case and the logarithmic case.

Remark 4.4. The remarkable fact established by Miyaoka [Miy08] is that the inequality 4.2.1 remains valid for any irreducible curve of genus g not necessarily smooth.

Let us see now the interesting consequences of this inequality.
Corollary 4.5. [Miy08] Let X be a surface of non-negative Kodaira dimension and let C be an irreducible curve of geometric genus g on it. If $C \not \approx \mathbb{P}^{1}$ and $K_{X} \cdot C>3 g-3$ then

$$
\begin{equation*}
2\left(K_{X} \cdot C-3 g+3\right)^{2}-\left(3 c_{2}-c_{1}^{2}\right)\left(C^{2}+3 K_{X} \cdot C-6 g+6\right) \leq 0 \tag{4.5.1}
\end{equation*}
$$

Proof. Since $C \not \approx \mathbb{P}^{1}$, we have $C^{2}+K_{X} \cdot C \geq 0$. Let

$$
Q(\alpha)=\frac{\alpha^{2}}{2}\left(C^{2}+3 C \cdot K_{X}-6 g+6\right)-2 \alpha\left(C \cdot K_{X}-3 g+3\right)+3 c_{2}-c_{1}^{2}
$$

It is a polynomial of degree 2 with a positive leading coefficient. The minimum is obtained at $\alpha_{0}=\frac{2\left(C \cdot K_{X}-3 g+3\right)}{\left.C^{2}+3 C \cdot K_{X}-6 g+6\right)}$ which belongs to $[0,1]$ since the denominator is equal to $2\left(C \cdot K_{X}-3 g+3\right)+C^{2}+K_{X} \cdot C$. Now,

$$
Q\left(\alpha_{0}\right)=-\frac{2\left(C \cdot K_{X}-3 g+3\right)^{2}}{\left(C^{2}+3 C \cdot K_{X}-6 g+6\right)}+3 c_{2}-c_{1}^{2} \geq 0
$$

by theorem 4.2. This is exactly the inequality we wanted to prove.
Corollary 4.6. [Miy08] Let X be a surface of non-negative Kodaira dimension and let C be a smooth curve of genus $g \geq 1$ on it. Then

$$
K_{X} \cdot C \leq \frac{3}{2}(2 g-2)+\frac{3 c_{2}-c_{1}^{2}}{2}+\frac{\sqrt{3 c_{2}-c_{1}^{2}} \sqrt{4 g-4+3 c_{2}-c_{1}^{2}}}{2}
$$

In particular, $K_{X} \cdot C \leq \frac{3}{2}(2 g-2)+o(g)$.
Proof. As C is smooth, we have $C^{2}=2 g-2-C \cdot K_{X}$. Therefore the inequality 4.5.1 gives $\left(K_{X} \cdot C\right)^{2}+\left(2(3-3 g)-\left(3 c_{2}-c_{1}^{2}\right)\right) K_{X} \cdot C+(3-3 g)^{2}-\left(3 c_{2}-c_{1}^{2}\right)(2-2 g) \leq$ 0 . We look at the last quantity as a quadratic polynomial in $K_{X} \cdot C$. Therefore $K_{X} \cdot C$ is smaller than the biggest root of this polynomial i.e.

$$
K_{X} \cdot C \leq \frac{3}{2}(2 g-2)+\frac{3 c_{2}-c_{1}^{2}}{2}+\frac{\sqrt{3 c_{2}-c_{1}^{2}} \sqrt{4 g-4+3 c_{2}-c_{1}^{2}}}{2}
$$

We will now prove the following theorem.
Theorem 4.7. [Miy08] Let X be a complex projective minimal surface of general type with $c_{1}^{2}>c_{2}$ and $C \subset X$ an irreducible curve of geometric genus g. Then $K_{X} \cdot C \leq$ $a(2 g-2)+b$ where a and b are functions of c_{1}^{2} and c_{2}.
Proof. If $C \cong \mathbb{P}^{1}$ then the result follows from Corollary 4.1. If $K_{X} \cdot C \leq 3 g-3$ the result holds trivially. In the other cases we write the inequality 4.5 . 1 as

$$
\begin{aligned}
&-2\left(K_{X} \cdot C\right)^{2}+4 K_{X} \cdot C(3 g-3)+3\left(c_{2}-c_{1}^{2}\right) K_{X} \cdot C-2(3-3 g)^{2}+\left(3 c_{2}-c_{1}^{2}\right)(6-6 g) \\
& \geq-\left(3 c_{2}-c_{1}^{2}\right) C^{2}
\end{aligned}
$$

i.e.

$$
\begin{aligned}
\left(\frac{c_{2}}{c_{1}^{2}}-1\right)\left(K_{X} \cdot C\right)^{2}+K_{X} \cdot C\left(4(g-1)+3 c_{2}\right. & \left.-c_{1}^{2}\right)-2(g-1)\left(3(g-1)+3 c_{2}-c_{1}^{2}\right) \\
& \geq\left(\frac{c_{2}}{c_{1}^{2}}-\frac{1}{3}\right)\left(\left(K_{X} \cdot C\right)^{2}-C^{2} \cdot K_{X}^{2}\right)
\end{aligned}
$$

As above, we look at the quantity on the left as a quadratic polynomial in $K_{X} \cdot C$.
Assuming $c_{1}^{2}>c_{2}$, it has a negative leading coefficient. From the Hodge index theorem, we see that $K_{X} \cdot C$ is smaller than the biggest root of this quadratic polynomial.

We will now show an application of corollary 4.6 in the case of surfaces which are compact quotient of the bi-disc recovering a result of $\left[\mathrm{BHK}^{+} 13\right]$ on the finiteness of smooth Shimura curves on compact Hilbert modular surfaces.

Corollary 4．8．Let X be a smooth compact quotient of the bi－disc．Then there exists finitely many smooth totally geodesic curves in X ．
Proof．Let $C \subset X$ be a smooth totally geodesic curve．Then $K_{X} \cdot C=2(2 g-$ $2)=-2 C^{2}$ ．It follows from corollary 4.6 that the geometric genus g is bounded． Therefore smooth totally geodesic curves form a bounded family．In case of infinite number of them，they would deform contradicting $C^{2}<0$ ．

References

［ACLG12］Pascal Autissier，Antoine Chambert－Loir，and Carlo Gasbarri．On the canonical degrees of curves in varieties of general type．Geom．Funct．Anal．，22（5）：1051－1061，2012．$\uparrow 2$
［BHK ${ }^{+}$13］Thomas Bauer，Brian Harbourne，Andreas Leopold Knutsen，Alex Küronya，Stefan Müller－ Stach，Xavier Roulleau，and Tomasz Szemberg．Negative curves on algebraic surfaces．Duke Math．J．，162（10）：1877－1894，2013．个 2， 10
［BM86］W．D．Brownawell and D．W．Masser．Vanishing sums in function fields．Math．Proc．Cam－ bridge Philos．Soc．，100（3）：427－434，1986．$\uparrow 2$
［Bog77］F．A．Bogomolov．Families of curves on a surface of general type．Dokl．Akad．Nauk SSSR， 236（5）：1041－1044，1977．个 2
［Bog78］F．A．Bogomolov．Holomorphic tensors and vector bundles on projective manifolds．Izv． Akad．Nauk SSSR Ser．Mat．，42（6）：1227－1287，1439，1978．$\uparrow 4$
［Cam04］Frédéric Campana．Orbifolds，special varieties and classification theory．Ann．Inst．Fourier （Grenoble），54（3）：499－630，2004．$\uparrow 2,5$
［Che04］Xi Chen．On algebraic hyperbolicity of log varieties．Commun．Contemp．Math．，6（4）：513－559， 2004．$\uparrow 2$
［Cla15］Benoît Claudon．Positivité du cotangent logarithmique et conjecture de Shafarevich－ Viehweg［d＇après Campana，Păun，Taji．．．］．Séminaire Bourbaki，November 2015．个 5
［CP15］Frédéric Campana and Mihai Păun．Orbifold generic semi－positivity：an application to fam－ ilies of canonically polarized manifolds．Ann．Inst．Fourier（Grenoble），65（2）：835－861， 2015. $\uparrow 2,7$
［CZ08］Pietro Corvaja and Umberto Zannier．Some cases of Vojta＇s conjecture on integral points over function fields．J．Algebraic Geom．，17（2）：295－333，2008．$\uparrow 2$
［Dem97］Jean－Pierre Demailly．Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials．In Algebraic geometry—Santa Cruz 1995，volume 62 of Proc．Sympos．Pure Math．， pages 285－360．Amer．Math．Soc．，Providence，RI，1997．$\uparrow 1$
［Fal83］G．Faltings．Arakelov＇s theorem for abelian varieties．Invent．Math．，73（3）：337－347，1983．$\uparrow 2$
［Jou78］J．P．Jouanolou．Hypersurfaces solutions d＇une équation de Pfaff analytique．Math．Ann．， 232（3）：239－245，1978．个 3
［Kim98］Minhyong Kim．ABC inequalities for some moduli spaces of log－general type．Math．Res． Lett．，5（4）：517－522，1998．$\uparrow 2$
［Lan01］Adrian Langer．The Bogomolov－Miyaoka－Yau inequality for \log canonical surfaces．J．Lon－ don Math．Soc．（2），64（2）：327－343，2001．$\uparrow 4$
［Laz04］Robert Lazarsfeld．Positivity in algebraic geometry．I，volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete．3．Folge．A Series of Modern Surveys in Mathematics［Results in Mathemat－ ics and Related Areas．3rd Series．A Series of Modern Surveys in Mathematics］．Springer－Verlag， Berlin，2004．Classical setting：line bundles and linear series．$\uparrow 5$
［LM97］Steven Shin－Yi Lu and Yoichi Miyaoka．Bounding codimension－one subvarieties and a gen－ eral inequality between Chern numbers．Amer．J．Math．，119（3）：487－502，1997．$\uparrow 7$
［Miy84］Yoichi Miyaoka．The maximal number of quotient singularities on surfaces with given nu－ merical invariants．Math．Ann．，268（2）：159－171，1984．个3
［Miy87］Yoichi Miyaoka．The Chern classes and Kodaira dimension of a minimal variety．In Algebraic geometry，Sendai，1985，volume 10 of Adv．Stud．Pure Math．，pages 449－476．North－Holland， Amsterdam，1987．$\uparrow 7$
［Miy08］Yoichi Miyaoka．The orbibundle Miyaoka－Yau－Sakai inequality and an effective Bogomolov－McQuillan theorem．Publ．Res．Inst．Math．Sci．，44（2）：403－417，2008．\uparrow 2，9， 10
［PR07］Gianluca Pacienza and Erwan Rousseau．On the logarithmic Kobayashi conjecture．J．Reine Angew．Math．，611：221－235，2007．$\uparrow 2$
［RT18］Erwan Rousseau and Frédéric Touzet．Curves in Hilbert modular varieties．Asian J．Math．， 22（4）：673－689，2018．个 2

Erwan Rousseau，Institut Universitaire de France \＆Aix Marseille Univ，CNRS，Cen－ trale Marseille，I2M，Marseille，France

Email address：erwan．rousseau＠univ－amu．fr

[^0]: The author was supported by the ANR project "FOLIAGE", ANR-16-CE40-0008.

