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ABSTRACT. Conjectures of Lang and Vojta state that varieties of general type
should be weakly algebraically hyperbolic. In particular, curves of bounded geomet-
ric genus lying on such a variety form a bounded family. We describe some recent
results related to algebraic hyperbolicity. We focus on some connections between
recent results of Miyaoka on the canonical degree of curves on surfaces of general
type and the theory of orbifold pairs developed by Campana.
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1. INTRODUCTION

Following ideas of Lang, it is generally expected that Kobayashi hyperbolicity,
which is of analytic nature, could be characterized by purely algebraic properties.
In this direction, Demailly [Dem97] made the following observation.

Theorem 1.1. Let X be a Kobayashi hyperbolic complex projective variety. Then there
exists ε > 0 such that every irreducible algebraic curve C ⊂ X satisfies

(1.1.1) − χ(C̃) = 2g(C̃)− 2 ≥ ε deg C̃,

where C̃ is the normalization of C.

This motivates the following purely algebraic definition.

Definition 1.2. Let X be a complex projective variety. X is said to be algebraically
hyperbolic if 1.1.1 holds for all irreducible algebraic curve C ⊂ X.

One of the interests of this definition is that it is related to Lang-Vojta’s con-
jectures on function fields. Let us formulate one of these geometric Lang-Vojta’s
conjectures in the setting of logarithmic pairs of general type, making clear the
connection with algebraic hyperbolicity.

Conjecture 1.3. Let X be a complex projective manifold, D ⊂ X a normal crossing
divisor. If (X, D) is of log-general type then there exists a proper subvariety Z ⊂ X and
real numbers A and B such that

(1.3.1) deg f (C) ≤ A(2g(C)− 2 + |S|) + B,

for all smooth projective curves C, finite morphisms f : C → X and finite subsets S ⊂ C
such that f−1(D) ⊂ S and f (C) 6⊂ Z.

The author was supported by the ANR project “FOLIAGE”, ANR-16-CE40-0008.
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Complex manifolds satisfying the weaker condition 1.3.1 are said to be weakly
algebraically hyperbolic.

The surface case in Conjecture 1.3 is still open, even when X = P2. Never-
theless, important results have been obtained towards this geometric Lang-Vojta’s
conjecture.

In the case of X = Pn, the conjecture is solved independently by [Che04] and
[PR07] for very general normal crossing divisors D ⊂ X of degree deg D ≥ 2n + 1.
For n = 2, some results have been obtained when deg D = 4 using arithmetic
methods on function fields. The four line case follows from an extension of Ma-
son’s ABC theorem [BM86] and the three components case can be reduced to a
S-unit gcd problem [CZ08].

Several interesting results have also been obtained on quotients of bounded
symmetric domains (see the interesting paper [ACLG12] for a discussion of conjec-
ture 1.3 in this context). In [Fal83], Faltings establishes the following boundedness
results for families p : X → C \ S of principally polarized abelian varieties of rel-
ative dimension g with level structures n ≥ 3: for all such induced morphisms to
the moduli space φ : C → Ag,n one has the inequality deg φ∗(K + D) ≤ g(3g(C) +
|S| + 1), where K is the canonical divisor of Ag,n and D is the compactification
divisor which can be assumed to be normal crossing. This was improved later by
Kim [Kim98] obtaining the inequality deg φ∗(K + D) ≤ g(g+1)

2 (2g(C) − 2 + |S|)
which is exactly conjecture 1.3 in this setting. Recently, a similar result has been
obtained in [RT18] for families of abelian varieties with real multiplication, thus
establishing conjecture 1.3 for Hilbert modular varieties.

In dimension 2, for the compact case (i.e. D = 0), the first striking result is
a theorem of Bogomolov [Bog77] proving conjecture 1.3 for surfaces of general
type with positive second Segre number s2 := c2

1 − c2. Recently, in the same
setting, Miyaoka [Miy08] gives an alternative proof of this statement obtaining
effective constants as functions of c2

1 and c2 in the inequality 1.3.1. Moreover,
when the curve C ⊂ X is supposed to be smooth, Miyaoka [Miy08] shows that
KX .C ≤ 3

2 (2g− 2) + o(g). These results are not only striking illustrations of Lang-
Vojta’s conjectures but we will try to explain that the method of proof is also in-
teresting since it can be translated into an application of the theory advertised by
Campana [Cam04] of the orbifold category.

In section 2, we review the ideas dating back to Bogomolov [Bog77] show-
ing how the theory of foliations can be used to derive algebraic hyperbolic-
ity of surfaces with positive Segre class. In section 3, we recall the classical
Bogomolov-Miyaoka-Yau inequality and explain how some more recent inequali-
ties of Miyaoka [Miy08] can be interpreted in the category of orbifold pairs (in the
sense of Campana). We also give some new higher dimensional generalizations
of these orbifold inequalities using recent results of Campana and Păun [CP15].
Finally in section 4, we explain how these results imply the above mentioned re-
sults of Miyaoka [Miy08] as well as some results of [BHK+13] on the finiteness of
smooth Shimura curves on compact Hilbert modular surfaces.

Acknowledgements. The author is grateful to the referee for many useful comments
which improved the exposition.

2. THE APPROACH VIA FOLIATIONS

Following ideas of Bogomolov [Bog77], one obtains a positive answer for some
surfaces.

Theorem 2.1. Let (X, D) be a log-smooth surface of log-general-type such that its log-
Chern classes satisfy c2

1 > c2. Then (X, D) satisfies conjecture 1.3.
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Proof. Under the hypothesis c2
1 > c2, one obtains that T∗X(log D) is big. Indeed, by

Riemann-Roch

χ(X, SmT∗X(log D)) =
m3

6
(c2

1 − c2) + O(m2).

Therefore h0(X, SmT∗X(log D)) + h2(X, SmT∗X(log D)) > cm3. Now, by Serre
duality and the isomorphism (KX ⊗ D) ⊗ TX(− log D) = T∗X(log D), we
have h2(X, SmT∗X(log D)) = h0(X, (KX ⊗ D)(−m) ⊗ KX ⊗ SmT∗X(log D)) ≤
h0(X, SmT∗X(log D)). The last inequality comes from the fact that (X, D) is of gen-
eral type and in particular, (KX ⊗ D)m ⊗ K−1

X is effective for large m. Finally, we
obtain h0(X, SmT∗X(log D)) > c

2 m3 and T∗X(log D) is big.
So we have a section ω ∈ H0(X, SmT∗X(log D)⊗ A−1), where A is any line bun-

dle. The morphism f : C → X induces a morphism f ′ : C → P(TX(− log D)).

Z = (ω = 0) ⊂ P(TX(− log D))

π

��
C

f //

f ′
55

X

By definition we have an inclusion f ′∗(O(1)) ↪→ KC( f ∗(D)red). So we easily
obtain the algebraic tautological inequality

degC( f ′∗(O(1)) ≤ 2g(C)− 2 + N1( f ∗D).

If f ′(C) 6⊂ Z then the previous inequality gives

1
m

deg f ∗A ≤ 2g(C)− 2 + N1( f ∗D).

Now, let us suppose that f ′(C) ⊂ Z and that Z is an irreducible horizontal sur-
face. Then Z is equipped with a tautological holomorphic foliation by curves: if
z ∈ Z is a generic point, a neighbourhood U of z induces a foliation on a neigh-
bourhood V of x = π(z). Indeed, a point in U ⊂ P(TX(− log D)) is of the form
(w, [t]) where w is a point in X and t a tangent vector at this point. This foliation
lifts through the isomorphism U → V induced by π. Leaves are just the deriva-
tives of leaves on V. Tautologically, f ′ : C → Z is a leaf. By a theorem of Jouanolou
[Jou78]: either Z has finitely many algebraic leaves or it is a fibration. In both cases,
one obtains immediately that deg f ∗(A) has to be bounded. �

Corollary 2.2. Let X = P2 and D = ∑r
i=1 Ci a normal crossing curve where Ci is a

curve of degree di, d1 ≤ d2 · · · ≤ dr. Then (P2, D) satisfies conjecture 1.3 if r ≥ 5 or,
r = 4 and d4 ≥ 2; r = 3 and d1 ≥ 2, d3 ≥ 3 or d1 = 1, d2 ≥ 3, d3 ≥ 4; r = 2 and
d1 ≥ 5 or d1 ≥ 4, d2 ≥ 7.

Proof. Let d := ∑ di. One has c2
1 − c2 = 6− 3d + ∑i<j didj. From theorem 2.1, one

immediately obtains the result. �

3. ORBIFOLD BOGOMOLOV-MIYAOKA-YAU INEQUALITIES

3.1. The classical Bogomolov-Miyaoka-Yau inequality. Let us start with the fol-
lowing classical statement.

Theorem 3.1. [Miy84] Let (X, D) be a log-smooth surface with reduced boundary. Let
E be a rank 2 reflexive subsheaf of ΩX(log D). If c1(E) is pseudoeffective, then

(3.1.1) c1(E)2 ≤ 3c2(E).
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We will give a simple proof of this theorem following [Lan01]. First, we
need some lemmas. Recall that c1(E) being pseudoeffective, one has a canonical
(Zariski) decomposition c1(E) = P + N where P is a nef Q-divisor (the positive
part), N = ∑ ajDj is an effective Q-divisor (the negative part) such that the Gram
matrix (Di · Dj) is negative definite, and P is orthogonal to N with respect to the
intersection form. We will also need the following theorem of Bogomolov [Bog78].

Theorem 3.2. Let X be a projective manifold , D a normal crossing divisor on X and
L ⊂ Ωp

X(log D) a coherent subsheaf of rank 1. Then κ(X, L) ≤ p.

Now, we can state the first lemma we need.

Lemma 3.3. If h0(X, E(−C)) 6= 0 and L · (C − 1
2 N) > 0 for some nef divisor L then

C · P ≤ c2(E)− 1
4 N2.

Proof. Consider the exact sequence 0 → O(C) → E → E/O(C) → 0. Then
c2(E) = c1(O(C)) · c1(E/O(C)) = C · (c1(E) − C) = P · C + 1

4 N2 − (C − 1
2 N)2.

H0(X, C) ↪→ H0(X, ΩX(log D)) so, by Bogomolov’s theorem 3.2, κ(X, C− 1
2 N) ≤

κ(X, C) ≤ 1. Next, observe that h2(X, m(C − 1
2 N) = 0 for m � 0 otherwise by

Serre duality one would obtain L · (C − 1
2 N)) ≤ 0. Therefore by Riemann-Roch

(C− 1
2 N)2 ≤ 0, which concludes the proof. �

We need the following generalization.

Lemma 3.4. If h0(X, SnE(−C)) 6= 0 and L · (C− n
2 N) > 0 for some nef divisor L then

C · P ≤ n(c2(E)− 1
4 N2).

Proof. Let s ∈ H0(X, SnE(−C)). Let us take a generically finite morphism f : Y →
X such that f ∗s = s1 . . . sn where si ∈ H0(X, f ∗E(−Ci)). We note f ∗C = ∑ Ci.
Therefore (∑ Ci − n

2 f ∗N)) · f ∗L = deg f · (C − n
2 N)).L > 0. By the preceding

lemma, if (Ci − 1
2 f ∗N) · f ∗L > 0 (which has to be verified for at least one i) or

Ci · f ∗P = (Ci − 1
2 f ∗N) · f ∗P > 0 then

Ci · f ∗P ≤ c2( f ∗E)− 1
4
( f ∗N)2 = deg f (c2(E)−

1
4

N2).

In the possible remaining cases where Ci · f ∗P = 0 one has also Ci · f ∗P = 0 ≤
c2( f ∗E)− 1

4 ( f ∗N)2. To finish, we take the sum of all these inequalities. �

Now, we can prove Theorem 3.1

Proof. Recall that N2 ≤ 0 by property of the Zariski decomposition. Let us prove
that c1(E)2 ≤ 3c2(E) + 1

4 N2 i.e.

1
3

P2 ≤ c2(E)−
1
4

N2.

If h0(X, SnE(−( n
2 N + naP+ H))) 6= 0 for some ample divisor H and a ≥ 1

3 then

1
3

nP2 ≤ naP2 ≤ P · (naP + H) ≤ n(c2(E)−
1
4

N2),

by the above lemma.
So we assume h0(X, SnE(−( n

2 N + naP + H))) = 0 for all a ≥ 1
3 and all n ≥ 1.

h2(X, SnE(−(n
2

N + naP + H))) = h0(X, SnE(−n
2

N + (na− n)P + H + KX))

≤ h0(X, SnE(−n
2

N − n(1− a)P− H)) + O(n2).

So for a = 1
3 , we have χ(X, SnE(−( n

2 N − n
3 P− H))) ≤ O(n2).
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By Riemann-Roch,

χ(X, SnE(−(n
2

N +
n
3

P+ H))) =
n3

6
(c2

1(E(−(
1
2

N +
1
3

P)))− c2(E(−(
1
2

N +
1
3

P)))+O(n2)

=
n3

6
(

1
4

N2 +
1
3

P2 − c2(E)) + O(n2).

�

3.2. Orbifold Bogomolov-Miyaoka-Yau inequalities. Let us start by introducing
some notations. Following Campana [Cam04] and the recent survey [Cla15], we
will call orbifold the data (X, ∆) of a log-smooth pair where X is a smooth complex
manifold, the support of the divisor ∆ is normal crossing and its coefficients are
rational numbers belonging to [0, 1] such that

∆ = ∑
i
(1− bi

ai
)∆i,

with the following conventions:

• if 1− bi
ai
< 1, the integers ai and bi are coprime and verify 0 < bi < ai;

• if 1− bi
ai
= 1, we put ai = 1 and bi = 0.

The general philosophy is that we will attach to this pair all the objects that are
usually attached to manifolds, defining them on suitable coverings.

Definition 3.5. An adapted cover to the pair (X, ∆) is the data of a Galois cover
π : Y → X such that:

(3.5.1) Y is smooth projective.
(3.5.2) π ramifies exactly at order ai over ∆i: π∗(∆i) = ∑j aiDi

j.
(3.5.3) the support of the divisor π∗∆+ Ram(π) is normal crossing as well as the

branch locus.

Remark 3.6. It is now classical that such coverings always exist (see [Laz04], prop.
4.1.12).

In local coordinates, the description of these coverings is quite simple. It is of
the following form:

π(w1, . . . , wn) = (wa1
1 , . . . , wak

k , wk+1, . . . , wn−j, w
mj
n−j+1, . . . , wm1

n ).

Let us now define the orbifold cotangent bundle. The idea is that this sheaf
should be generated by dzi

z
1−bi/ai
i

.

The key observation is that we have a residue map π∗ΩX(logd∆e)→ ⊕
iObi Di ,

where Di := 1
ai

π∗∆i.

Definition 3.7. We define the orbifold cotangent bundle Ω(π, ∆) to be the kernel
of this residue map. In other words, it is defined by the exact sequence

0→ Ω(π, ∆)→ π∗ΩX(logd∆e)→
⊕

i
Obi Di → 0.

Remark 3.8. The notation Ω(π, ∆) is here to insist that this bundle exists only on
the total space of π.

Let us define orbifold Chern classes as the Chern classes of the orbifold cotan-
gent bundle.

Definition 3.9.
ci(X, ∆) := ci(Ω(π, ∆)).
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We may now compute orbifold Chern classes in terms of the pair (X, ∆).

Proposition 3.10. Let (X, ∆) be an orbifold surface. Then:

c1(X, ∆) := π∗(KX + ∆),

c2(X, ∆) := deg π · (c2(X)− χ(∆)),
where

χ(∆) = ∑
i
(1− bi

ai
)χ(∆i)−∑

i<j
(1− bi

ai
)(1−

bj

aj
)∆i · ∆j.

Proof. Let π : Y → X be an adapted cover. We have the exact sequence

0→ Ω(π, ∆)→ π∗ΩX(logd∆e)→
⊕

i
Obi Di → 0.

Therefore we have the following equality between total Chern classes

c(π∗ΩX(logd∆e)) = c(Ω(π, ∆)) ·∏
i

c(Obi Di ).

Using the exact sequence

0→ O(−biDi)→ OY → Obi Di → 0,

one obtains that c1(Obi Di ) = biDi, and c2(Obi Di ) = b2
i (Di)2.

For the first Chern class, we immediately obtain,

c1(Ω(π, ∆)) = π∗(KX + d∆e −∑
i

bi
ai

∆i).

For the second Chern class,

c2(Ω(π, ∆)) = c2(π
∗ΩX(logd∆e)−∑

i<j
bibjDiDj −∑

i
b2

i (Di)2 − c1 ·∑
i

biDi

= deg π · (c2(X)−∑
i

χ(∆i) + ∑
i<j

∆i · ∆j −∑
i<j

bi
ai

bj

aj
∆i · ∆j

−∑
i

b2
i

a2
i

∆2
i − (KX + ∆) ·∑

i

bi
ai

∆i)

= deg π · (c2(X)−∑
i

χ(∆i) + ∑
i<j

∆i · ∆j −∑
i<j

bi
ai

bj

aj
∆i · ∆j −∑

i

b2
i

a2
i

∆2
i

−∑
i

bi
ai

KX · ∆i −∑
i,j

bi
ai

∆i · ∆j + ∑
i,j

bi
ai

bj

aj
∆i · ∆j).

= deg π · (c2(X)−∑
i

χ(∆i) + ∑
i<j

∆i · ∆j + ∑
i<j

bi
ai

bj

aj
∆i · ∆j

−∑
bi
ai
(KX + ∆i) · ∆i −∑

i<j
(

bi
ai

+
bj

aj
)∆i · ∆j)

= deg π · (c2(X)− χ(∆)).

�

Remark 3.11. One should notice that the above formula for c2(X, ∆) interpolates
between the compact case ∆ = 0 (where c2(X) = χ(X)) and the logarithmic case
∆ = d∆e (where c2(X, ∆) = χ(X − |∆|)). Moreover, one sees that χ(∆) can be
computed by repeated applications of the basic formula χ(∆1 + ∆2) = χ(∆1) +
χ(∆2)− ∆1 · ∆2.
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Now we can state the following orbifold Bogomolov-Miyaoka-Yau inequality.

Corollary 3.12. Let (X, ∆) be an orbifold surface. If KX + ∆ is pseudoeffective then:

(3.12.1) (KX + ∆)2 ≤ 3(c2(X)− χ(∆)).

Proof. One just applies theorem 3.1 to the orbifold cotangent bundle Ω(π, ∆), use
proposition 3.10 and divide by deg π. �

3.3. The higher dimensional case. We will extend the orbifold Bogomolov-
Miyaoka-Yau inequality to higher dimension.

Theorem 3.13. Let (X, ∆) be an orbifold where X is a complex manifold of dimension
n ≥ 2. If KX + ∆ is nef then for arbitrary ample divisors H1, . . . , Hn−2 and each adapted
cover π : Y → X:

(3.13.1) c1(X, ∆)2 · π∗(H1 . . . Hn−2) ≤ 3c2(X, ∆) · π∗(H1 . . . Hn−2).

Remark 3.14. In the logarithmic case (i.e. all coefficients of ∆ are equal to 1), a much
stronger inequality than 3.13.1 is claimed in [LM97] since KX + D is only assumed
to be pseudo-effective. Unfortunately, a gap in the proof has been recently found.

We will adapt the proof of Miyaoka [Miy87] using the recent result of [CP15].

Theorem 3.15. Let (X, ∆) be an orbifold with KX + ∆ pseudoeffective and π : Y → X
an adapted cover. Then Ω(π, ∆) is generically semipositive in the following sense: let
H1, . . . , Hn−1 be ample divisors, then any quotient Ω(π, ∆)⊗m � Q has nonnegative
degree on π∗(H1 . . . Hn−1).

Recall now the classical Bogomolov-Gieseker inequality.

Theorem 3.16. Let S be a smooth projective surface. If E is an H-semistable sheaf of rank
r on S (H is an ample divisor), then

(r− 1)c2
1(E ) ≤ 2rc2(E ).

Let us now give the proof of theorem 3.13.

Proof. Let E := Ω(π, ∆). Let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Es = E be the
π∗(H1, . . . , Hn−2, KX + ∆)-semistable filtration. Put Gi = Ei/Ei−1, ri = rankGi,
and αi such that

ri · αi =
c1(Gi) · π∗(H1 . . . Hn−2(KX + ∆))
c1(E ) · π∗(H1 . . . Hn−2(KX + ∆))

.

Then we have r1 · α1 + · · ·+ rs · αs = 1 and α1 > · · · > αs ≥ 0, the last inequality
coming from semipositivity of E (3.15). In the following, we will make repeated
use of the inequality

r2
i α2

i c2
1(E ) · π∗(H1 . . . Hn−2) ≥ c2

1(Gi) · π∗(H1 . . . Hn−2),

which comes directly from the Hodge index theorem applied to the nef classes
c1(E ), H1, . . . , Hn−2.

Now, we have

(2c2(E )− c2
1(E )) · π∗(H1 . . . Hn−2) = (∑

i
(2c2(Gi)− c2

1(Gi))) · π∗(H1 . . . Hn−2).

From Bogomolov-Gieseker inequality 3.16, we have

2c2(Gi)− c2
1(Gi) · π∗(H1 . . . Hn−2) ≥

−1
ri

c2
1(Gi) · π∗(H1 . . . Hn−2),

for all i.
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So, we deduce

(6c2(E )− 2c2
1(E )) · π∗(H1 . . . Hn−2) ≥(

3(∑
i>1

−1
ri

c2
1(Gi)) + 6c2(E1)− 3c2

1(E1) + c2
1(E )

)
· π∗(H1 . . . Hn−2)

And finally,
(3.16.1)
(6c2(E )− 2c2

1(E )) ·π∗(H1 . . . Hn−2) ≥ ((1− 3 ∑
i>1

riα
2
i ) · c2

1(E )+ 6c2(E1)− 3c2
1(E1)) ·π∗(H1 . . . Hn−2).

There are three possibilities: r1 ≥ 3, r1 = 2 and r1 = 1.
If r1 ≥ 3, using Bogomolov-Gieseker inequality and the Hodge index theorem,

we obtain

(6c2(E )− 2c2
1(E )) · π∗(H1 . . . Hn−2) ≥

((1− 3 ∑
i>1

riα
2
i ) · c2

1(E )− 3
1
r1

c2
1(E1)) · π∗(H1 . . . Hn−2) ≥

(1− 3 ∑
i

riα
2
i ) · c2

1(E )π∗(H1 . . . Hn−2) ≥ (1− 3α1)c2
1(E ) · π∗(H1 . . . Hn−2) ≥ 0.

since 3α1 ≤ r1α1 ≤ ∑i riαi = 1.
If r1 = 2, let S be a general complete intersection surface of the linear systems

π∗|mi Hi|. We choose S general enough so that E1|S injects into ΩS(log π−1d∆e|S).
Using Theorem 3.1, we have either κ(S, c1(E1|S)) ≤ 0 or c2

1(E1|S) ≤ 3c2(E1|S).
In the case κ(S, c1(E1|S)) ≤ 0, since c1(E1|S) · π∗(KX + ∆) > 0, we have

c2
1(E1|S) ≤ 0.

Applying Bogomolov-Gieseker inequality to 3.16.1:

(6c2(E )− 2c2
1(E )) · π∗(H1 . . . Hn−2) ≥

((1− 3 ∑
i>1

riα
2
i ) · c2

1(E )− 3
2

c2
1(E1)) · π∗(H1 . . . Hn−2) ≥

(1− 3 ∑
i>1

riα
2
i ) · c2

1(E ) · π∗(H1 . . . Hn−2) ≥

(1− 3α2 ∑
i>1

riαi) · c2
1(E ) · π∗(H1 . . . Hn−2) =

(1− 3α2(1− 2α1)) · c2
1(E ) · π∗(H1 . . . Hn−2) ≥

(1− 3α1(1− 2α1)) · c2
1(E ) · π∗(H1 . . . Hn−2) =(

6(α1 −
1
4
)2 +

5
8

)
· c2

1(E ) · π∗(H1 . . . Hn−2) ≥ 0.

In the case c2
1(E1|S) ≤ 3c2(E1|S), we have from 3.16.1:

(6c2(E )− 2c2
1(E )) · π∗(H1 . . . Hn−2) ≥

((1− 3 ∑
i>1

riα
2
i ) · c2

1(E )− c2
1(E1)) · π∗(H1 . . . Hn−2) ≥

((1− 4α2
1 − 3 ∑

i>1
riα

2
i ) · c2

1(E )) · π∗(H1 . . . Hn−2) ≥

((1− 4α2
1 − 3α2 ∑

i>1
riαi) · c2

1(E )) · π∗(H1 . . . Hn−2) =

((1− 4α2
1 − 3α2(1− 2α1)) · c2

1(E )) · π∗(H1 . . . Hn−2) =

(1− 2α1)(1 + 2α1 − 3α2) · c2
1(E )) · π∗(H1 . . . Hn−2).



ALGEBRAIC HYPERBOLICITY 9

As 3α2 < r1α1 + r2α2 ≤ 1, we have

(6c2(E )− 2c2
1(E )) · π∗(H1 . . . Hn−2) ≥ 2α1(1− 2α1)c2

1(E )) · π∗(H1 . . . Hn−2) ≥ 0.

Finally, if r1 = 1, Theorem 3.2 implies that E1|S ⊂ ΩS(log π−1d∆e|S) has Ko-
daira dimension at most one. Therefore c2

1(E1|S) ≤ 0. From 3.16.1, one obtains:

(6c2(E )− 2c2
1(E )) · π∗(H1 . . . Hn−2) ≥

((1− 3 ∑
i>1

riα
2
i ) · c2

1(E )) · π∗(H1 . . . Hn−2) ≥

((1− 3α1 ∑
i>1

riαi) · c2
1(E )) · π∗(H1 . . . Hn−2) =

((1− 3α1(1− α1)) · c2
1(E )) · π∗(H1 . . . Hn−2) ≥(

1− 3
2
(1− 1

2
)

)
· c2

1(E ) · π∗(H1 . . . Hn−2) =
1
4

c2
1(E )) · π∗(H1 . . . Hn−2) ≥ 0.

�

4. APPLICATIONS

First, let us recall the immediate application of the classical inequality 3.1.1.

Corollary 4.1. Let C ⊂ X be a smooth curve in a surface X with pseudo-effective canon-
ical bundle KX . Then

(4.1.1) KX · C ≤ 2(2g− 2) + 3c2 − c2
1.

Proof. We apply the classical Bogomolov-Miyaoka-Yau inequality 3.1.1 to E =
T∗X(log C). This gives c2

1(T
∗
X(log C)) ≤ 3c2(T∗X(log C)), i.e. (KX + C)2 ≤ 3(χ(X)−

χ(C)). Finally, we obtain KX · C ≤ 2(2g− 2) + 3c2 − c2
1. �

We will now explain how the orbifold inequality 3.12.1 inequality improves the
estimate 4.1.1.

First, let us observe that the orbifold inequality 3.12.1 easily implies the follow-
ing theorem of Miyaoka [Miy08].

Theorem 4.2. Let X be a surface of non-negative Kodaira dimension and let C be a
smooth curve of genus g on it. If 0 ≤ α ≤ 1 is a real number, then the inequality

(4.2.1)
α2

2
(C2 + 3C · KX − 6g + 6)− 2α(C · KX − 3g + 3) + 3c2 − c2

1 ≥ 0,

holds.

Proof. When 0 ≤ α ≤ 1 is a rational number, one applies the inequality 3.12.1 to
the pair (X, αC) and easily gets 4.2.1. �

Remark 4.3. We see that if one takes α = 0 then one recover the classical inequal-
ity c2

1 ≤ 3c2, whereas if α = 1 one finds the logarithmic inequality of corollary
4.1. Therefore the inequality 4.2.1 interpolates between the compact case and the
logarithmic case.

Remark 4.4. The remarkable fact established by Miyaoka [Miy08] is that the in-
equality 4.2.1 remains valid for any irreducible curve of genus g not necessarily
smooth.

Let us see now the interesting consequences of this inequality.

Corollary 4.5. [Miy08] Let X be a surface of non-negative Kodaira dimension and let C
be an irreducible curve of geometric genus g on it. If C 6' P1 and KX · C > 3g− 3 then

(4.5.1) 2(KX · C− 3g + 3)2 − (3c2 − c2
1)(C

2 + 3KX · C− 6g + 6) ≤ 0
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Proof. Since C 6' P1, we have C2 + KX · C ≥ 0. Let

Q(α) =
α2

2
(C2 + 3C · KX − 6g + 6)− 2α(C · KX − 3g + 3) + 3c2 − c2

1.

It is a polynomial of degree 2 with a positive leading coefficient. The minimum is
obtained at α0 = 2(C·KX−3g+3)

C2+3C·KX−6g+6) which belongs to [0, 1] since the denominator is

equal to 2(C · KX − 3g + 3) + C2 + KX · C. Now,

Q(α0) = −
2(C · KX − 3g + 3)2

(C2 + 3C · KX − 6g + 6)
+ 3c2 − c2

1 ≥ 0

by theorem 4.2. This is exactly the inequality we wanted to prove. �

Corollary 4.6. [Miy08] Let X be a surface of non-negative Kodaira dimension and let C
be a smooth curve of genus g ≥ 1 on it. Then

KX · C ≤
3
2
(2g− 2) +

3c2 − c2
1

2
+

√
3c2 − c2

1

√
4g− 4 + 3c2 − c2

1

2
.

In particular, KX · C ≤ 3
2 (2g− 2) + o(g).

Proof. As C is smooth, we have C2 = 2g− 2−C ·KX . Therefore the inequality 4.5.1
gives (KX ·C)2 + (2(3− 3g)− (3c2− c2

1))KX ·C + (3− 3g)2− (3c2− c2
1)(2− 2g) ≤

0. We look at the last quantity as a quadratic polynomial in KX ·C. Therefore KX ·C
is smaller than the biggest root of this polynomial i.e.

KX · C ≤
3
2
(2g− 2) +

3c2 − c2
1

2
+

√
3c2 − c2

1

√
4g− 4 + 3c2 − c2

1

2
.

�

We will now prove the following theorem.

Theorem 4.7. [Miy08] Let X be a complex projective minimal surface of general type
with c2

1 > c2 and C ⊂ X an irreducible curve of geometric genus g. Then KX · C ≤
a(2g− 2) + b where a and b are functions of c2

1 and c2.

Proof. If C ∼= P1 then the result follows from Corollary 4.1. If KX · C ≤ 3g− 3 the
result holds trivially. In the other cases we write the inequality 4.5.1 as

− 2(KX ·C)2 + 4KX ·C(3g− 3)+ 3(c2− c2
1)KX ·C− 2(3− 3g)2 +(3c2− c2

1)(6− 6g)

≥ −(3c2 − c2
1)C

2.

i.e.

(
c2

c2
1
− 1)(KX · C)2 + KX · C(4(g− 1) + 3c2 − c2

1)− 2(g− 1)(3(g− 1) + 3c2 − c2
1)

≥ (
c2

c2
1
− 1

3
)((KX · C)2 − C2 · K2

X).

As above, we look at the quantity on the left as a quadratic polynomial in KX ·C.
Assuming c2

1 > c2, it has a negative leading coefficient. From the Hodge in-
dex theorem, we see that KX · C is smaller than the biggest root of this quadratic
polynomial. �

We will now show an application of corollary 4.6 in the case of surfaces which
are compact quotient of the bi-disc recovering a result of [BHK+13] on the finite-
ness of smooth Shimura curves on compact Hilbert modular surfaces.
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Corollary 4.8. Let X be a smooth compact quotient of the bi-disc. Then there exists finitely
many smooth totally geodesic curves in X.

Proof. Let C ⊂ X be a smooth totally geodesic curve. Then KX · C = 2(2g −
2) = −2C2. It follows from corollary 4.6 that the geometric genus g is bounded.
Therefore smooth totally geodesic curves form a bounded family. In case of infinite
number of them, they would deform contradicting C2 < 0. �
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